Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 711-721.DOI: 10.16085/j.issn.1000-6613.2022-0754
• Energy processes and technology • Previous Articles Next Articles
GUO Zhipeng1,2(), BU Xianbiao2, LI Huashan2, GONG Yulie2, WANG Lingbao2()
Received:
2022-04-26
Revised:
2022-09-08
Online:
2023-03-13
Published:
2023-02-25
Contact:
WANG Lingbao
郭志鹏1,2(), 卜宪标2, 李华山2, 龚宇烈2, 王令宝2()
通讯作者:
王令宝
作者简介:
郭志鹏(1997—),男,硕士研究生,研究方向为地热能开发利用。E-mail:guozp@ms.giec.ac.cn。
基金资助:
CLC Number:
GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721.
郭志鹏, 卜宪标, 李华山, 龚宇烈, 王令宝. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0754
参数 | 数值 |
---|---|
注入浓度/mol·kg | 1 |
地下水流速/ m·d-1 | 1 |
孔隙率 | 1 |
扩散系数/m2·s-1 | 10-9 |
纵向弥散系数/m | 100 |
横向弥散系数/m | 10 |
注入区域半径/m | 44 |
参数 | 数值 |
---|---|
注入浓度/mol·kg | 1 |
地下水流速/ m·d-1 | 1 |
孔隙率 | 1 |
扩散系数/m2·s-1 | 10-9 |
纵向弥散系数/m | 100 |
横向弥散系数/m | 10 |
注入区域半径/m | 44 |
参数 | 数值 |
---|---|
岩石密度/kg·m-3 | 2700 |
岩石比热容/J·kg-1·℃-1 | 1000 |
岩石热导率/W·m-1·℃-1 | 2.8 |
裂隙宽度/m | 0.001 |
注射速度/m·s-1 | 0.01 |
初始温度/℃ | 80 |
注入温度/℃ | 30 |
参数 | 数值 |
---|---|
岩石密度/kg·m-3 | 2700 |
岩石比热容/J·kg-1·℃-1 | 1000 |
岩石热导率/W·m-1·℃-1 | 2.8 |
裂隙宽度/m | 0.001 |
注射速度/m·s-1 | 0.01 |
初始温度/℃ | 80 |
注入温度/℃ | 30 |
参数 | 压裂储层 | 裂隙 |
---|---|---|
密度/kg·m-3 | 2600 | 2000 |
比热容/J·kg-1·℃-1 | 1000 | 800 |
热导率/W·m-1·℃-1 | 3 | 2.8 |
渗透率/m2 | 3×10-15 | 5×10-11 |
孔隙度 | 0.15 | 1 |
单位质量岩石SiO2摩尔数/mol·kg-1 | 10 | 10 |
溶质扩散系数/m2·s-1 | 10-9 | 10-9 |
参数 | 压裂储层 | 裂隙 |
---|---|---|
密度/kg·m-3 | 2600 | 2000 |
比热容/J·kg-1·℃-1 | 1000 | 800 |
热导率/W·m-1·℃-1 | 3 | 2.8 |
渗透率/m2 | 3×10-15 | 5×10-11 |
孔隙度 | 0.15 | 1 |
单位质量岩石SiO2摩尔数/mol·kg-1 | 10 | 10 |
溶质扩散系数/m2·s-1 | 10-9 | 10-9 |
组别 | 个数 | 倾向/(°) | 倾角/(°) | 长轴/m | 短轴/m | 标准差 | 宽度/m |
---|---|---|---|---|---|---|---|
1 | 1 | 90 | 90 | 160 | 100 | 0 | 10-3 |
2 | 1 | 0 | 90 | 160 | 100 | 0 | 10-3 |
3 | 25 | 均匀随机 | 90 | 70 | 1 | 5×10-4 |
组别 | 个数 | 倾向/(°) | 倾角/(°) | 长轴/m | 短轴/m | 标准差 | 宽度/m |
---|---|---|---|---|---|---|---|
1 | 1 | 90 | 90 | 160 | 100 | 0 | 10-3 |
2 | 1 | 0 | 90 | 160 | 100 | 0 | 10-3 |
3 | 25 | 均匀随机 | 90 | 70 | 1 | 5×10-4 |
参数 | 压裂储层 | 围岩 | 裂隙 |
---|---|---|---|
密度/kg·m-3 | 2590 | 2623 | 2000 |
比热容/J·kg-1·℃-1 | 890 | 980 | 800 |
热导率/W·m-1·℃-1 | 2.8 | 3 | 2.8 |
渗透率/m2 | 1.2×10-15 | 10-16 | 5×10-11 |
孔隙度 | 0.05 | 0.01 | 1 |
单位质量岩石SiO2摩尔数/mol·kg-1 | 23 | 23 | 23 |
溶质扩散系数/m2·s-1 | 10-9 | 10-9 | 10-9 |
参数 | 压裂储层 | 围岩 | 裂隙 |
---|---|---|---|
密度/kg·m-3 | 2590 | 2623 | 2000 |
比热容/J·kg-1·℃-1 | 890 | 980 | 800 |
热导率/W·m-1·℃-1 | 2.8 | 3 | 2.8 |
渗透率/m2 | 1.2×10-15 | 10-16 | 5×10-11 |
孔隙度 | 0.05 | 0.01 | 1 |
单位质量岩石SiO2摩尔数/mol·kg-1 | 23 | 23 | 23 |
溶质扩散系数/m2·s-1 | 10-9 | 10-9 | 10-9 |
网格数量 | 第30年生产温度/℃ |
---|---|
23993 | 160.60 |
65569 | 159.44 |
99844 | 158.86 |
110095 | 158.71 |
134874 | 158.75 |
网格数量 | 第30年生产温度/℃ |
---|---|
23993 | 160.60 |
65569 | 159.44 |
99844 | 158.86 |
110095 | 158.71 |
134874 | 158.75 |
1 | 王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. |
WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. | |
2 | 王文中, 邵东云, 程新科, 等. 中国浅层和中深层地热能的开发和利用[J]. 水电与新能源, 2022, 36(3): 21-25. |
WANG Wenzhong, SHAO Dongyun, CHENG Xinke, et al. Development and utilization of the shallow and middle-deep geothermal energy in China[J]. Hydropower and New Energy, 2022, 36(3): 21-25. | |
3 | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947. | |
4 | BU Xianbiao, JIANG Kunqing, LI Huashan. Performance of geothermal single well for intermittent heating[J]. Energy, 2019, 186: 115858. |
5 | 李盼. 干热岩CO2-EGS中热-流-固-化耦合效应研究[D]. 徐州: 中国矿业大学, 2020. |
LI Pan. Study on effect of thermo-hydro-mechanical-chemical coupling in CO2-EGS of hot dry rock[D]. Xuzhou: China University of Mining and Technology, 2020. | |
6 | 孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 79-87. |
SUN Zhixue, JIANG Chuanyin, ZHANG Kai, et al. Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 79-87. | |
7 | SHI Yu, SONG Xianzhi, FENG Yanjun. Effects of lateral-well geometries on multilateral-well EGS performance based on a thermal-hydraulic-mechanical coupling model[J]. Geothermics, 2021, 89: 101939. |
8 | 张杰, 谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业, 2021, 41(3): 179-188. |
ZHANG Jie, XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188. | |
9 | BREEDE K, DZEBISASHVILI K, LIU XL, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future[J]. Geothermal Energy, 2013, 1(1): 1-27. |
10 | 赵志宏. 岩石裂隙水-岩作用机制与力学行为研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3063-3073. |
ZHAO Zhihong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3063-3073. | |
11 | DIPIPPO R. Geothermal power plants: Principles, applications, case studies and environmental impact[M]. 3rd ed. Amsterdam: Butterworth-Heinemann, 2012. |
12 | YANAGISAWA N, MATSUNAGA I, SUGITA H, et al. Temperature-dependent scale precipitation in the Hijiori Hot Dry Rock system, Japan[J]. Geothermics, 2008, 37(1): 1-18. |
13 | SONG Guofeng, SONG Xianzhi, JI Jiayan, et al. Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system[J]. Renewable Energy, 2022, 186: 126-142. |
14 | RAWAL C, GHASSEMI A. A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir[J]. Geothermics, 2014, 50: 10-23. |
15 | PANDEY S N, CHAUDHURI A, RAJARAM H, et al. Fracture transmissivity evolution due to silica dissolution/precipitation during geothermal heat extraction[J]. Geothermics, 2015, 57: 111-126. |
16 | CHEN Yun, MA Guowei, WANG Huidong. The simulation of thermo-hydro-chemical coupled heat extraction process in fractured geothermal reservoir[J]. Applied Thermal Engineering, 2018, 143: 859-870. |
17 | 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010. |
ZHAO Yangsheng. Multi-field coupling of porous media and its engineering response[M]. Beijing: Science Press, 2010. | |
18 | MILLINGTON R J, QUIRK J P. Permeability of porous solids[J]. Transactions of the Faraday Society, 1961, 57(0): 1200-1207. |
19 | RIMSTIDT J D, BARNES H L. The kinetics of silica-water reactions[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1683-1699. |
20 | WILSON John L, MILLER Paul J. Two-dimensional plume in uniform ground-water flow[J]. Journal of the Hydraulics Division, 1978, 104(4): 503-514. |
21 | HUANG Man, JIAO Yuyong, LUO Jin, et al. Numerical investigation on heat extraction performance of an enhanced geothermal system with supercritical N2O as working fluid[J]. Applied Thermal Engineering, 2020, 176: 115436. |
22 | BARENDS F. Complete solution for transient heat transport in porous media, following lauwerier's concept[C]//SPE Annual Technical Conference and Exhibition. Florence: Society of Petroleum Engineers, 2010. |
23 | 张森琦, 严维德, 黎敦朋, 等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 45(6): 1087-1102. |
ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087-1102. | |
24 | 于漂罗, 张盛生, 查恩爽. 青海共和盆地新近系热储层地热资源量评价与分析[J]. 世界地质, 2021, 40(4): 907-914. |
YU Piaoluo, ZHANG Shengsheng, ZHA Enshuang. Geothermal energy assessment and analysis in Neogene geothermal reservoir of Gonghe Basin, Qinghai[J]. Global Geology, 2021, 40(4): 907-914. | |
25 | LEI Zhihong, ZHANG Yanjun, ZHANG Senqi, et al. Electricity generation from a three-horizontal-well enhanced geothermal system in the Qiabuqia geothermal field, China: Slickwater fracturing treatments for different reservoir scenarios[J]. Renewable Energy, 2020, 145: 65-83. |
26 | XU Chaoshui, DONG Shaoqun, WANG Hang, et al. Modelling of coupled hydro-thermo-chemical fluid flow through rock fracture networks and its applications[J]. Geosciences, 2021, 11(4): 153. |
27 | LIU Feng, KANG Yong, HU Yi, et al. Comparative investigation on the heat extraction performance of an enhanced geothermal system with N2O, CO2 and H2O as working fluids[J]. Applied Thermal Engineering, 2022, 200: 117594. |
[1] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[2] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[3] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[4] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[5] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[6] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[7] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[8] | HUANG Ming, ZU Yunqiu, GAO Kang, WEI Wei, ZHANG Na, ZHU Huaping, LIU Chuntai. VARTM simulation and high temperature mechanical properties of large tow CF/EP automobile floor [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2546-2554. |
[9] | ZHOU Zhiyi, WANG Jinqing, WANG Guangxin, CHI Zuohe, WENG Yukan. Study on pore size of bubble maturation characteristics in porous media [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1265-1271. |
[10] | ZHANG Chuanbao, WANG Yanling, CHEN Mengxin, LIANG Shinan, SHI Wenjing. Research progress on high temperature resistant guar gum fracturing fluid and its damage mechanism to reservoirs [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5912-5924. |
[11] | ZHANG Xuemin, ZHANG Shanling, LI Pengyu, HUANG Tingting, YIN Shaoqi, LI Jinping, WANG Yingmei. Research progress on influencing factors and strengthening mechanism of CO2-CH4 hydrate replacement in porous media system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5259-5271. |
[12] | WEN Fengshuo, LIU Shaoshuai, WU Wenting, SONG Jiantang, ZHU Haifeng, JIANG Zhenhua, WU Yinong. Comparison of pure stainless steel wire mesh and mixed HoCu2 particle as regenerator material at 10—30K [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 113-119. |
[13] | SHU Zhao, ZHONG Ke, XIAO Xin, JIA Hongwei, LYU Fengyong, CHANG Sha. Recent progress in application of composite phase change materials with nanoparticles matrix for energy savings of buildings [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 265-278. |
[14] | ZHANG Xuemin, ZHANG Mengjun, YANG Huijie, LI Yinhui, LI Jinping, WANG Yingmei. Research progress on formation kinetics of gas hydrate in porous media below freezing point [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 101-108. |
[15] | WU Hao, SUO Mengshan, TAO Xingxiao, CHE Zhizhao, SUN Kai, CHEN Rui, WANG Tianyou. Optical visualization of gas-liquid two-phase flow in open-cell metal foam [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4152-4164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |