Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 1061-1072.DOI: 10.16085/j.issn.1000-6613.2022-0738
• Resources and environmental engineering • Previous Articles Next Articles
CHEN Jiakun1,2(), TANG Jian1,2(), XIA Heng1,2, QIAO Junfei1,2
Received:
2022-04-24
Revised:
2022-06-04
Online:
2023-03-13
Published:
2023-02-25
Contact:
TANG Jian
陈佳昆1,2(), 汤健1,2(), 夏恒1,2, 乔俊飞1,2
通讯作者:
汤健
作者简介:
陈佳昆(1998—),男,硕士研究生,研究方向为城市固废焚烧过程数值仿真与建模。E-mail:ChenJK@emails.bjut.edu.cn。
基金资助:
CLC Number:
CHEN Jiakun, TANG Jian, XIA Heng, QIAO Junfei. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072.
陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0738
模块类型 | 模块名称 | 模块作用 | 温度/℃ | 压强/kPa |
---|---|---|---|---|
RStoic | Dry | 降低MSW含水率 | 250 | 101.295 (微负压) |
Deacon | Deacon反应 | 600 | ||
RGibbs | CombustionA1-CombustionA10 CombustionB1-CombustionB10 CombustionC1-CombustionC10 CombustionD1-CombustionD10 | 固相燃烧,产生DXN | 500 | |
600 | ||||
700 | ||||
500 | ||||
PY1-PY10 | 气相燃烧,DXN分解 | 850 | ||
HG1-HG10 | 高温气相反应 | 650 | ||
PC1-PC10 | 前体催化反应 | 350 | ||
DN1-DN10 | 从头合成反应 | 350 | ||
RYield | DryGrate BurnGrate1 BurnGrate2 BurnoutGrate | 将MSW转化为 可识别的 常规组分, 模拟挥发分析出 | 500 | |
600 | ||||
700 | ||||
500 | ||||
Sep | Sep1-Sep10 | 组分分离 | — | — |
Fsplit | Split1-Split21 | 分离流股 | — | — |
Mixer | Mix1-Mix11 | 混合流股 | — | — |
模块类型 | 模块名称 | 模块作用 | 温度/℃ | 压强/kPa |
---|---|---|---|---|
RStoic | Dry | 降低MSW含水率 | 250 | 101.295 (微负压) |
Deacon | Deacon反应 | 600 | ||
RGibbs | CombustionA1-CombustionA10 CombustionB1-CombustionB10 CombustionC1-CombustionC10 CombustionD1-CombustionD10 | 固相燃烧,产生DXN | 500 | |
600 | ||||
700 | ||||
500 | ||||
PY1-PY10 | 气相燃烧,DXN分解 | 850 | ||
HG1-HG10 | 高温气相反应 | 650 | ||
PC1-PC10 | 前体催化反应 | 350 | ||
DN1-DN10 | 从头合成反应 | 350 | ||
RYield | DryGrate BurnGrate1 BurnGrate2 BurnoutGrate | 将MSW转化为 可识别的 常规组分, 模拟挥发分析出 | 500 | |
600 | ||||
700 | ||||
500 | ||||
Sep | Sep1-Sep10 | 组分分离 | — | — |
Fsplit | Split1-Split21 | 分离流股 | — | — |
Mixer | Mix1-Mix11 | 混合流股 | — | — |
工业分析 | 元素分析 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分M(ar) | 固定碳FC(d) | 挥发分 V(d) | 灰分 ASH(d) | C(d) | H(d) | N(d) | Cl(d) | S(d) | O(d) | |
36.3 | 14.16 | 60.08 | 25.76 | 47.66 | 6.17 | 0.33 | 0.88 | 0.17 | 19.03 |
工业分析 | 元素分析 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分M(ar) | 固定碳FC(d) | 挥发分 V(d) | 灰分 ASH(d) | C(d) | H(d) | N(d) | Cl(d) | S(d) | O(d) | |
36.3 | 14.16 | 60.08 | 25.76 | 47.66 | 6.17 | 0.33 | 0.88 | 0.17 | 19.03 |
位置 | 温度/℃ | 流量/kg·h-1 | 组成(摩尔分率) |
---|---|---|---|
一次风 | |||
干燥炉排 | 226.85 | 20688 | N2/O2=0.79/0.21 |
燃烧炉排1 | 226.85 | 43962 | |
燃烧炉排2 | 226.85 | 18102 | |
燃烬炉排 | 226.85 | 5172 | |
二次风 | |||
炉膛前拱和后拱 | 28.65 | 9051 |
位置 | 温度/℃ | 流量/kg·h-1 | 组成(摩尔分率) |
---|---|---|---|
一次风 | |||
干燥炉排 | 226.85 | 20688 | N2/O2=0.79/0.21 |
燃烧炉排1 | 226.85 | 43962 | |
燃烧炉排2 | 226.85 | 18102 | |
燃烬炉排 | 226.85 | 5172 | |
二次风 | |||
炉膛前拱和后拱 | 28.65 | 9051 |
来源模块-流股名称 | 分流分率 | 反应模块-温度名称 | 温度/℃ |
---|---|---|---|
Split9-SPY | 1×10-4 | Pyrolysis-TPY | 850 |
Split15-SHG | 1×10-3 | Homogeneous-THG | 650 |
Split17-SPC | 1×10-3 | PrecursorCatalytic-TPC | 350 |
Split20-SDN | 1×10-7 | DeNovo-TDN | 350 |
来源模块-流股名称 | 分流分率 | 反应模块-温度名称 | 温度/℃ |
---|---|---|---|
Split9-SPY | 1×10-4 | Pyrolysis-TPY | 850 |
Split15-SHG | 1×10-3 | Homogeneous-THG | 650 |
Split17-SPC | 1×10-3 | PrecursorCatalytic-TPC | 350 |
Split20-SDN | 1×10-7 | DeNovo-TDN | 350 |
水平 | A | B | C | D | E/℃ | F/℃ | G/℃ | H/℃ |
---|---|---|---|---|---|---|---|---|
1 | 5×10-5 | 5×10-4 | 5×10-4 | 5×10-8 | 800 | 500 | 200 | 200 |
2 | 1×10-4 | 1×10-3 | 1×10-3 | 1×10-7 | 850 | 650 | 350 | 350 |
3 | 1.5×10-4 | 1.5×10-3 | 1.5×10-3 | 1.5×10-7 | 900 | 800 | 500 | 500 |
水平 | A | B | C | D | E/℃ | F/℃ | G/℃ | H/℃ |
---|---|---|---|---|---|---|---|---|
1 | 5×10-5 | 5×10-4 | 5×10-4 | 5×10-8 | 800 | 500 | 200 | 200 |
2 | 1×10-4 | 1×10-3 | 1×10-3 | 1×10-7 | 850 | 650 | 350 | 350 |
3 | 1.5×10-4 | 1.5×10-3 | 1.5×10-3 | 1.5×10-7 | 900 | 800 | 500 | 500 |
案例 | A | B | C | D | E | F | G | H | DXN浓度/ng TEQ·m-3 | PCDFs浓度/ng·m-3 | PCDDs浓度/ng·m-3 | PCDFs/PCDDs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.0578 | 0.1759 | 0.1295 | 1.3579 |
2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0353 | 0.1343 | 0.0984 | 1.3650 |
3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 0.0286 | 0.1087 | 0.0793 | 1.3700 |
25 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 3 | 0.1395 | 0.4210 | 0.4345 | 0.9688 |
26 | 3 | 3 | 2 | 1 | 2 | 1 | 3 | 1 | 0.1532 | 0.5059 | 0.4225 | 1.1974 |
27 | 3 | 3 | 2 | 1 | 3 | 2 | 1 | 2 | 0.1740 | 0.6211 | 0.4419 | 1.4055 |
案例 | A | B | C | D | E | F | G | H | DXN浓度/ng TEQ·m-3 | PCDFs浓度/ng·m-3 | PCDDs浓度/ng·m-3 | PCDFs/PCDDs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.0578 | 0.1759 | 0.1295 | 1.3579 |
2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0353 | 0.1343 | 0.0984 | 1.3650 |
3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 0.0286 | 0.1087 | 0.0793 | 1.3700 |
25 | 3 | 3 | 2 | 1 | 1 | 3 | 2 | 3 | 0.1395 | 0.4210 | 0.4345 | 0.9688 |
26 | 3 | 3 | 2 | 1 | 2 | 1 | 3 | 1 | 0.1532 | 0.5059 | 0.4225 | 1.1974 |
27 | 3 | 3 | 2 | 1 | 3 | 2 | 1 | 2 | 0.1740 | 0.6211 | 0.4419 | 1.4055 |
指标 | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
DXN浓度 | ||||||||
极差R | 0.0301 | 0.0632 | 0.0609 | 0.0502 | 0.0066 | 0.0028 | 0.0373 | 0.0323 |
主次顺序 | B>C>D>G>H>A>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E2 | F2 | G3 | H3 |
PCDFs浓度 | ||||||||
极差R | 0.0896 | 0.1657 | 0.1423 | 0.1308 | 0.0301 | 0.0266 | 0.1415 | 0.124 |
主次顺序 | B>C>G>D>H>A>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E1 | F3 | G3 | H3 |
PCDDs浓度 | ||||||||
极差R | 0.1573 | 0.1331 | 0.1254 | 0.1125 | 0.0348 | 0.0287 | 0.0709 | 0.08 |
主次顺序 | A>B>C>D>H>G>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E3 | F1 | G3 | H3 |
PCDFs/PCDDs | ||||||||
极差R | 0.436 | 0.158 | 0.148 | 0.163 | 0.107 | 0.208 | 0.208 | 0.213 |
主次顺序 | A>H>G>F>D>B>C>E | |||||||
最优水平 | — | — | — | — | — | — | — | — |
指标 | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
DXN浓度 | ||||||||
极差R | 0.0301 | 0.0632 | 0.0609 | 0.0502 | 0.0066 | 0.0028 | 0.0373 | 0.0323 |
主次顺序 | B>C>D>G>H>A>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E2 | F2 | G3 | H3 |
PCDFs浓度 | ||||||||
极差R | 0.0896 | 0.1657 | 0.1423 | 0.1308 | 0.0301 | 0.0266 | 0.1415 | 0.124 |
主次顺序 | B>C>G>D>H>A>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E1 | F3 | G3 | H3 |
PCDDs浓度 | ||||||||
极差R | 0.1573 | 0.1331 | 0.1254 | 0.1125 | 0.0348 | 0.0287 | 0.0709 | 0.08 |
主次顺序 | A>B>C>D>H>G>E>F | |||||||
最优水平 | A1 | B1 | C1 | D1 | E3 | F1 | G3 | H3 |
PCDFs/PCDDs | ||||||||
极差R | 0.436 | 0.158 | 0.148 | 0.163 | 0.107 | 0.208 | 0.208 | 0.213 |
主次顺序 | A>H>G>F>D>B>C>E | |||||||
最优水平 | — | — | — | — | — | — | — | — |
1 | 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的DXN排放浓度检测方法综述[J]. 自动化学报, 2020, 46(6): 1063-1089. |
QIAO Junfei, GUO Zihao, TANG Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey[J]. Acta Automatica Sinica, 2020, 46(6): 1063-1089. | |
2 | 陈安, 陈晶睿, 崔晶, 等. 中国31个直辖市和省会(首府)城市“垃圾围城”风险与对策研究——基于DIIS方法的实证研究[J]. 中国科学院院刊, 2019, 34(7): 797-806. |
CHEN An, CHEN Jingrui, CUI Jing, et al. Research on risks and countermeasures of “cities besieged by waste” in China——an empirical analysis based on DIIS[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(7): 797-806. | |
3 | ARAFAT Hassan A, JIJAKLI Kenan, AHSAN Amimul. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment[J]. Journal of Cleaner Production, 2015, 105: 233-240. |
4 | 汤健, 夏恒, 乔俊飞, 等. 深度集成森林回归建模方法及应用[J]. 北京工业大学学报, 2021, 47(11): 1219-1229. |
TANG Jian, XIA Heng, QIAO Junfei, et al. Modeling method of deep ensemble forest regression with its application[J]. Journal of Beijing University of Technology, 2021, 47(11): 1219-1229. | |
5 | 汤健, 王丹丹, 郭子豪 等. 基于虚拟样本优化选择的城市固废焚烧过程二𫫇英排放浓度预测[J]. 北京工业大学学报, 2021, 47(5): 431-443. |
TANG Jian, WANG Dandan, GUO Zihao, et al. Prediction of dioxin emission concentration in the municipal solid waste incineration process based on optimal selection of virtual samples[J]. Journal of Beijing University of Technology, 2021, 47(5): 431-443. | |
6 | BALLSCHMITER K, SWEREV M. Reaction pathways for the formation of polychlorodibenzodioxins (PCDD) and-furans (PCDF) in combustion processes I[J]. Fresenius' Zeitschrift Für Analytische Chemie, 1987, 328(1/2): 125-127. |
7 | WEBER Roland, HAGENMAIER Hanspaul. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions[J]. Chemosphere, 1999, 38(3): 529-549. |
8 | KHACHATRYAN Lavrent, ASATRYAN Ruben, DELLINGER Barry. An elementary reaction kinetic model of the gas-phase formation of polychlorinated dibenzofurans from chlorinated phenols[J]. The Journal of Physical Chemistry A, 2004, 108(44): 9567-9572. |
9 | ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)[J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. |
10 | LOMNICKI Slawomir, DELLINGER Barry. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/silica surface[J]. The Journal of Physical Chemistry A, 2003, 107(22): 4387-4395. |
11 | NGANAI S, LOMNICKI S M, DELLINGER B. Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-dichlorobenzene[J]. Environmental Science & Technology, 2011, 45(3): 1034-1040. |
12 | STIEGLITZ L, VOGG H. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators[J]. Chemosphere, 1987, 16(8/9): 1917-1922. |
13 | ZHANG Mengmei, BUEKENS Alfons. De novo synthesis of dioxins: A review[J]. International Journal of Environment and Pollution, 2016, 60(1/2/3/4): 63-110. |
14 | EBOH Francis Chinweuba, ANDERSSON Bengt-Åke, RICHARDS Tobias. Economic evaluation of improvements in a waste-to-energy combined heat and power plant[J]. Waste Management, 2019, 100: 75-83. |
15 | 李树森. 城市固体生活垃圾O2/CO2燃烧发电厂流程仿真模拟与优化[D]. 北京: 北京交通大学, 2015. |
LI Shusen. Process simulation and optimization of the municipal solid waste fired power plant with O2/CO2 combustion[D]. Beijing: Beijing Jiaotong University, 2015. | |
16 | HUAI X L, XU W L, QU Z Y, et al. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator[J]. Waste Management, 2008, 28(1): 15-29. |
17 | ZHUANG J, TANG J, QIAO J. Numerical simulation of municipal solid waste incineration process based on chemical process simulation software[C]. Shanghai: Proceedings of the 2021 40th Chinese Control Conference (CCC), 2021. |
18 | SUN R, ISMAIL T M, REN X, et al. Numerical simulation of gas concentration and dioxin formation for MSW combustion in a fixed bed[J]. Journal of Environmental Management, 2015, 157: 111-117. |
19 | 应雨轩, 林晓青, 吴昂键, 等. 生活垃圾智慧焚烧的研究现状及展望[J]. 化工学报, 2021, 72(2): 886-900. |
YING Yuxuan, LIN Xiaoqing, WU Angjian, et al. Review and outlook on municipal solid waste smart incineration[J]. CIESC Journal, 2021, 72(2): 886-900. | |
20 | WEI J, LI H, LIU J. Fate of dioxins in a municipal solid waste incinerator with state-of-the-art air pollution control devices in China[J]. Environmental Pollution, 2021, 289: 117798. |
21 | DENG Dongyang, QIAO Junqin, LIU Mingqing, et al. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism[J]. Journal of Hazardous Materials, 2019, 369: 279-289. |
22 | STANMORE B R. The formation of dioxins in combustion systems[J]. Combustion and Flame, 2004, 136(3): 398-427. |
23 | ZHANG Sheng, CHEN Zhiliang, LIN Xiaoqing, et al. Kinetics and fusion characteristics of municipal solid waste incineration fly ash during thermal treatment[J]. Fuel, 2020, 279: 118410. |
24 | ZHONG Rigang, CAI Jianjun, YAN Feng, et al. Process tracing and partitioning behaviors of PCDD/Fs in the post-combustion zone from a full-scale municipal solid waste incinerator in Southern China[J]. Environmental Technology & Innovation, 2021, 23: 101789. |
25 | PENG Yaqi, CHEN Jinghao, LU Shengyong, et al. Chlorophenols in municipal solid waste incineration: A review[J]. Chemical Engineering Journal, 2016, 292: 398-414. |
26 | TUNGALAG Azjargal, LEE Bongju, YADAV Manoj, et al. Yield prediction of MSW gasification including minor species through ASPEN plus simulation [J]. Energy, 2020, 198: 117296. |
27 | LUIJK R, AKKERMAN D M, SLOT P, et al. Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon[J]. Environmental Science & Technology, 1994, 28(2): 312-321. |
28 | 邱坤赞, 严建华, 岑可法, 等. 二𫫇英在流化床垃圾焚烧炉内生成及分解的模拟计算[J]. 电站系统工程, 2003, 19(3): 15-16, 18. |
QIU Kunzan, YAN Jianhua, CEN Kefa, et al. Simulated calculation on formation and decomposition of dioxin in FB incinerator[J]. Power System Engineering, 2003, 19(3): 15-16, 18. | |
29 | HELL K, STIEGLITZ L, ALTWICKER E R, et al. Reactions of 2,4,6-trichlorophenol on model fly ash: Oxidation to CO and CO2, condensation to PCDD/F and conversion into related compounds[J]. Chemosphere, 2001, 42(5/6/7): 697-702. |
30 | Evalena WIKSTRÖM, RYAN Shawn, TOUATI Abderrahmane, et al. Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans[J]. Environmental Science & Technology, 2003, 37(9): 1962-1970. |
31 | SHAUB W M, TSANG W. Dioxin formation in incinerators[J]. Environmental Science & Technology, 1983, 17(12): 721-730. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[3] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[4] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |