Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6278-6285.DOI: 10.16085/j.issn.1000-6613.2023-0174

• Energy processes and technology • Previous Articles    

Synergy of cooling system of liquid-cooled phase change material composite battery

FANG Qiang(), ZHAO Ming()   

  1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2023-02-10 Revised:2023-05-10 Online:2024-01-08 Published:2023-12-25
  • Contact: ZHAO Ming

液冷-相变材料复合电池散热系统的协同性

方强(), 赵明()   

  1. 上海理工大学能源与动力工程学院,上海 200093
  • 通讯作者: 赵明
  • 作者简介:方强(1997—),男,硕士研究生,研究方向为电池热管理。E-mail:1515749121@qq.com

Abstract:

In order to fully utilize the advantages of active and passive heat dissipation in the battery heat dissipation system of liquid cooled composite phase change materials, a simulation model of the composite heat dissipation system was established, and the synergistic idea between different heat dissipation modules in the composite system was proposed. Based on this idea, the optimal values of the filling amount, liquid cooling start time, and coolant flow rate of the composite phase change material (CPCM) in the system were explored. The results indicated that the synergy between CPCM filling amount, liquid cooling start time, and coolant flow rate had a significant impact on whether the composite system could fully utilize the active and passive heat dissipation advantages of each module. When the battery spacing reached 2mm, the filling amount of CPCM could meet the heat dissipation requirements of the battery at low magnification. Turning on the liquid cooling module when the liquid fraction of CPCM was 0.9 could significantly improve the utilization rate of CPCM module. When the coolant flow rate was greater than 0.03m/s, the temperature rise of the battery could be suppressed. When the flow rate was greater than 0.2m/s, the latent heat of CPCM could be recovered. Choosing the corresponding speed according to the different needs of the car could achieve the goal of reducing energy consumption. This article proposed a collaborative approach that could provide a new approach for the research of composite heat dissipation systems.

Key words: battery thermal management, composite phase change materials, liquid cooling, synergism, numerical analysis

摘要:

为充分发挥液冷-相变材料复合电池散热系统中主被动散热的优势,建立复合散热系统仿真模型,提出了复合系统中不同散热模块间的协同性思想,并基于此思想探究系统中复合相变材料(composite phase change material,CPCM)填充量、液冷启动时间和冷却液流速的最佳值。结果表明,CPCM填充量、液冷启动时间和冷却液流速之间的协同,对复合系统能否充分发挥各模块的主被动散热优势存在重要影响。电池间距达到2mm时,CPCM的填充量即可满足电池在低倍率下的散热要求;在CPCM液相分数为0.9时开启液冷模块,可以显著提高CPCM模块利用率;冷却液流速大于0.03m/s可抑制电池温升,流速大于0.2m/s时可回收CPCM潜热,根据汽车不同需求选择相应速度,可达到降低能耗的目的。本文提出的协同性思想可以为复合散热系统的研究提供一种新思路。

关键词: 电池热管理, 复合相变材料, 液冷, 协同性, 数值分析

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd