Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (3): 652-658.DOI: 10.16085/j.issn.1000-6613.2015.03.008

Previous Articles     Next Articles

Numerical study on catalytic Fischer-Tropsch synthesis reaction in micro-channel

LUO Qing, ZHANG Li, CAO Jun, XU Hong, LIU Bo   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2014-07-29 Revised:2014-10-09 Online:2015-03-05 Published:2015-03-05

微通道下费托合成催化剂层涂覆厚度的数值研究

罗青, 张莉, 曹军, 徐宏, 刘波   

  1. 华东理工大学化学工程联合国家重点实验室, 上海 200237
  • 通讯作者: 张莉,教授,从事表面强化、微通道、高效节能的研究。E-mail:lzhang@ecust.edu.cn。
  • 作者简介:罗青(1989-),男,硕士研究生,从事微通道反应器、涂覆催化剂性能的研究。E-mail:luoqing11223@126.com。
  • 基金资助:

    上海市自然科学基金项目(10ZR1408100)

Abstract: According to Fischer-Tropsch synthesis(F-T) reaction kinetics of Fe-based catalysts, a two-dimension model has been developed with COMSOL-Multiphysics by coupling flow, mass transfer, chemical reactions and heat transfer fields. The characteristics of Fischer-Tropsch synthesis in micro-channel has been studied with this model. Detailed research has been taken on the effect of the thickness of catalytic layers and cooling velocity to F-T reactions, heat and mass transfer performance. The numerical results show that, along the axial direction, temperature increased slowly and then declined quickly. By increasing the thickness of catalytic layers, the temperature peak moved away from outlet, CO conversion was improved, methane selectivity increased while C5+ selectivity decreased slightly. It's possible to have better temperature control, improve C5+ selectivity, and significantly reduce the selectivity of CH4 by increasing cooling velocity. Under the set researching conditions (the cross-sectional dimension of the micro-channel is 0.6×0.6mm2 with a length of 200mm), the preferred catalyst thickness is 0.10mm, also, with the enhancement of the cooling capacity on cooling side, the preferred thickness increases.

Key words: micro-channel, Fischer-Tropsch synthesis, reaction kinetics, thickness of catalytic layers, numerical analysis

摘要: 采用COMSOL-Multiphysics软件, 针对Fe基催化剂费托合成反应动力学特性, 建立了耦合流动、传热、传质、化学反应多物理场的二维数值计算单元模型, 研究微通道内的费托合成反应。重点研究了催化剂涂层厚度、冷却介质流速对微通道内传热传质、费托反应产物分布的影响规律。模拟结果表明:沿反应通道轴向方向, 催化剂涂层温度呈先升高后降低的趋势;随着催化剂涂层厚度的增加, 温度峰值出现的位置逐渐远离出口, CO转化率提高, CH4的选择性增大, 而C5+的选择性逐渐减小;提高冷却介质流速有利于实现较好的温度控制, 显著降低CH4的选择性, 提高C5+选择性;对于截面尺寸为0.6×0.6mm2、长度为200mm的微通道结构, 较佳的催化剂涂层厚度为0.1mm, 随着冷却侧冷却能力的增强, 较佳的催化剂涂层厚度变大。

关键词: 微通道, 费托合成, 反应动力学, 催化剂层厚度, 数值分析

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd