Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5501-5508.DOI: 10.16085/j.issn.1000-6613.2022-2189
• Resources and environmental engineering • Previous Articles Next Articles
FAN Baotian1,2(), YAN Zhenrong1,3(
), SU Houde2, LIU Cenfan4, SONG Yujuan5
Received:
2022-11-25
Revised:
2023-02-14
Online:
2023-11-11
Published:
2023-10-15
Contact:
YAN Zhenrong
范宝田1,2(), 严祯荣1,3(
), 苏厚德2, 刘岑凡4, 宋玉娟5
通讯作者:
严祯荣
作者简介:
范宝田(1996—),男,硕士,研究方向为能源清洁利用。E-mail:fbt18715063449@163.com。
基金资助:
CLC Number:
FAN Baotian, YAN Zhenrong, SU Houde, LIU Cenfan, SONG Yujuan. Synergistic reduction of NO x and CO2 emissions by coupling pulverized coal with biomass gas[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5501-5508.
范宝田, 严祯荣, 苏厚德, 刘岑凡, 宋玉娟. 煤粉耦合生物质气协同降低NO x 和CO2的排放技术[J]. 化工进展, 2023, 42(10): 5501-5508.
工业分析war/% | 元素分析war/% | 低位热值/kJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
w(M) | w(A) | w(V) | w(FC) | w(C) | w(H) | w(O) | w(N) | w(S) | |
16.00 | 5.04 | 28.05 | 50.91 | 64.00 | 3.78 | 10.08 | 0.67 | 0.43 | 24320 |
工业分析war/% | 元素分析war/% | 低位热值/kJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
w(M) | w(A) | w(V) | w(FC) | w(C) | w(H) | w(O) | w(N) | w(S) | |
16.00 | 5.04 | 28.05 | 50.91 | 64.00 | 3.78 | 10.08 | 0.67 | 0.43 | 24320 |
生物质气体积分数/% | 密度/kg·m-3 | 显热/kJ·m-3 | 空燃比 | 低位热值/kJ·m-3 | |||||
---|---|---|---|---|---|---|---|---|---|
N2 | CO | H2 | CO2 | CH4 | H2O | ||||
40.30 | 25.49 | 21.53 | 8.00 | 0.45 | 4.23 | 1.078 | 1126 | 1.6 | 5696 |
生物质气体积分数/% | 密度/kg·m-3 | 显热/kJ·m-3 | 空燃比 | 低位热值/kJ·m-3 | |||||
---|---|---|---|---|---|---|---|---|---|
N2 | CO | H2 | CO2 | CH4 | H2O | ||||
40.30 | 25.49 | 21.53 | 8.00 | 0.45 | 4.23 | 1.078 | 1126 | 1.6 | 5696 |
反应式 | Ar | Er/J·kmol-1 | 速率指数 |
---|---|---|---|
(2) | 2.119×1011 | 2.027×108 | [vol]:0.2;[O2]:1.3 |
(3) | 2.240×1012 | 4.180×107 | [CO]:1;[O2]:1.3 |
(4) | 5.690×1011 | 1.465×108 | [H2]:1;[O2]:0.5 |
(5) | 1×1015 | 1×108 | [CH4]:0.2;[O2]:1.3 |
反应式 | Ar | Er/J·kmol-1 | 速率指数 |
---|---|---|---|
(2) | 2.119×1011 | 2.027×108 | [vol]:0.2;[O2]:1.3 |
(3) | 2.240×1012 | 4.180×107 | [CO]:1;[O2]:1.3 |
(4) | 5.690×1011 | 1.465×108 | [H2]:1;[O2]:0.5 |
(5) | 1×1015 | 1×108 | [CH4]:0.2;[O2]:1.3 |
反应式 | Ar | Er/J·kmol-1 | 速率指数 |
---|---|---|---|
(10) | 0.005 | 7.396×107 | [O2]:1 |
(11) | 0.00635 | 1.620×108 | [CO2]:1.3 |
(12) | 0.00192 | 1.469×108 | [H2O]:1 |
反应式 | Ar | Er/J·kmol-1 | 速率指数 |
---|---|---|---|
(10) | 0.005 | 7.396×107 | [O2]:1 |
(11) | 0.00635 | 1.620×108 | [CO2]:1.3 |
(12) | 0.00192 | 1.469×108 | [H2O]:1 |
参数 | 纯煤 | 掺烧10%生物质气 | 掺烧20%生物质气 | 掺烧30%生物质气 | 改造工况 |
---|---|---|---|---|---|
一次风量/kg·s-1 | 81 | 81 | 81 | 81 | 80 |
二次风量/kg·s-1 | 137 | 137 | 137 | 137 | 83 |
燃尽风量/kg·s-1 | 105 | 105 | 105 | 105 | 52 |
分离燃尽风量/kg·s-1 | — | — | — | — | 108 |
一次风与煤粉的温度/K | 337 | 337 | 337 | 337 | 337 |
二次风温度/K | 484 | 484 | 484 | 484 | 484 |
煤粉量/kg·s-1 | 34.72 | 31.25 | 27.78 | 24.31 | 24.31 |
生物质气量/m3·s-1 | — | 14.82 | 29.64 | 44.46 | 44.46 |
生物质气的温度/K | 363 | 363 | 363 | 363 | 363 |
参数 | 纯煤 | 掺烧10%生物质气 | 掺烧20%生物质气 | 掺烧30%生物质气 | 改造工况 |
---|---|---|---|---|---|
一次风量/kg·s-1 | 81 | 81 | 81 | 81 | 80 |
二次风量/kg·s-1 | 137 | 137 | 137 | 137 | 83 |
燃尽风量/kg·s-1 | 105 | 105 | 105 | 105 | 52 |
分离燃尽风量/kg·s-1 | — | — | — | — | 108 |
一次风与煤粉的温度/K | 337 | 337 | 337 | 337 | 337 |
二次风温度/K | 484 | 484 | 484 | 484 | 484 |
煤粉量/kg·s-1 | 34.72 | 31.25 | 27.78 | 24.31 | 24.31 |
生物质气量/m3·s-1 | — | 14.82 | 29.64 | 44.46 | 44.46 |
生物质气的温度/K | 363 | 363 | 363 | 363 | 363 |
1 | 李政, 张东杰, 潘玲颖, 等. “双碳”目标下我国能源低碳转型路径及建议[J]. 动力工程学报, 2021, 41(11): 905-909. |
LI Zheng, ZHANG Dongjie, PAN Lingying, et al. Low-carbon transition of China’s energy sector and suggestions with the‘Carbon-peak and carbon-neutrality’ target[J]. Journal of Chinese Society of Power Engineering, 2021, 41(11): 905-909. | |
2 | 马学礼, 王笑飞, 孙希进, 等. 燃煤发电机组碳排放强度影响因素研究[J]. 热力发电, 2022, 51(1): 190-195. |
MA Xueli, WANG Xiaofei, SUN Xijin, et al. Influence factors of carbon emission intensity of coal-fired power units[J]. Thermal Power Generation, 2022, 51(1): 190-195. | |
3 | 陆王琳, 陆启亮, 张志洪. 碳中和背景下综合智慧能源发展趋势[J]. 动力工程学报, 2022, 42(1): 10-18. |
LU Wanglin, LU Qiliang, ZHANG Zhihong. An overview of the integrated energy systems’ development under the background of carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2022, 42(1): 10-18. | |
4 | 杨斌, 刘仲铠, 林柯利, 等. 面向碳中和与先进动力的燃烧反应动力学研究方法进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 663-677. |
YANG Bin, LIU Zhongkai, LIN Keli, et al. Towards carbon neutrality and advanced engines: Progress in combustion kinetics research methods[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(4): 663-677. | |
5 | 李加护, 王小涛, 高硕, 等. 300MW燃煤锅炉掺烧生物质燃气的数值模拟[J]. 动力工程学报, 2020, 40(6): 440-446. |
LI Jiahu, WANG Xiaotao, GAO Shuo, et al. Numerical simulation on co-firing characteristics of coal and biomass gas in a 300MW boiler[J]. Journal of Chinese Society of Power Engineering, 2020, 40(6): 440-446. | |
6 | DONG Changqing, YANG Yongping, YANG Rui, et al. Numerical modeling of the gasification based biomass co-firing in a 600MW pulverized coal boiler[J]. Applied Energy, 2010, 87(9): 2834-2838. |
7 | KARAMPINIS E, NIKOLOPOULOS N, NIKOLOPOULOS A, et al. Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace[J]. Applied Energy, 2012, 97: 514-524. |
8 | FANG Q Y, MUSA A A B, WEI Y, et al. Numerical simulation of multifuel combustion in a 200MW tangentially fired utility boiler[J]. Energy & Fuels, 2012, 26(1): 313-323. |
9 | 王春波, 魏建国, 盛金贵, 等. 300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟[J]. 中国电机工程学报, 2012, 32(14): 14-19. |
WANG Chunbo, WEI Jianguo, SHENG Jingui, et al. Numerical simulation of combustion characteristics of a 300MW blast furnace gas/pulverized coal combined combustion boiler[J]. Proceedings of the CSEE, 2012, 32(14): 14-19. | |
10 | 张小桃, 赵伟, 闻猛. 不同温度生物质气与煤粉混燃过程及污染物排放特性[J]. 热力发电, 2017, 46(9): 47-52. |
ZHANG Xiaotao, ZHAO Wei, WEN Meng. Study on co-combustion process and pollutant emission characteristics of biomass gas and pulverized coal at different temperatures[J]. Thermal Power Generation, 2017, 46(9): 47-52. | |
11 | 张小桃, 张卫东, 慕昊良, 等. 600MW机组燃煤锅炉耦合生物质气再燃污染物排放研究[J]. 热力发电, 2021, 50(6): 26-32. |
ZHANG Xiaotao, ZHANG Weidong, MU Haoliang, et al. Pollutant emission of a 600MW coal-fired boiler coupled with biomass gas reburning[J]. Thermal Power Generation, 2021, 50(6): 26-32. | |
12 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
13 | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. | |
14 | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
15 | VEKEMANS O, J-P LAVIOLETTE, CHAOUKI J. Reduction of pulverized coal boiler’s emissions through ReEngineered Feedstock™ co-combustion[J]. Energy, 2016, 101: 471-483. |
16 | CHANG Jian, ZHOU Zhijian, MA Xinrui, et al. Computational investigation of hydrodynamics, coal combustion and NO x emissions in a tangentially fired pulverized coal boiler at various loads[J]. Particuology, 2022, 65: 105-116. |
17 | XING Jiangkuan, LUO Kun, WANG Haiou, et al. A DNS study on temporally evolving jet flames of pulverized coal/biomass co-firing with different blending ratios[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4005-4012. |
18 | LI Zixiang, QIAO Xinqi, MIAO Zhengqing. A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler[J]. Energy, 2021, 222: 119912. |
19 | 张迪. 煤粉锅炉优化燃烧及降低NO x 生成的数值研究[D]. 大连: 大连理工大学, 2022. |
ZHANG Di. Numerical study on optimizing combustion and reducing NO x generation in pulverized coal boiler[D]. Dalian: Dalian University of Technology, 2022. | |
20 | 王俊. 生物质掺混对煤粉锅炉燃烧及NO x 排放影响的数值模拟研究[D]. 济南: 山东大学, 2022. |
WANG Jun. Numerical simulation research on the influence of biomass blending on the combustion and NO x emission of pulverized coal boiler[D]. Jinan: Shandong University, 2022. | |
21 | 程含含. 基于焦炉煤气掺烧的煤粉锅炉低负荷低氮燃烧性能数值模拟研究[D]. 贵阳: 贵州大学, 2022. |
CHENG Hanhan. Numerical simulation study on low load and low nitrogen combustion performance of pulverized coal boiler based on coke oven gas mixed combustion[D]. Guiyang: Guizhou University, 2022. | |
22 | 范宝田, 严祯荣, 胡玉龙. 高硫煤四角切圆锅炉贴壁风倾角对水冷壁高温腐蚀影响研究[J]. 热力发电, 2022, 51(3): 88-95. |
FAN Baotian, YAN Zhenrong, HU Yulong. Research on influence of water wall adhering wind dip angle on high temperature corrosion in tangentially-fired boiler burning high sulfur coal[J]. Thermal Power Generation, 2022, 51(3): 88-95. | |
23 | 王爽奇, 田宇, 龚迎莉, 等. 330MW煤粉锅炉掺烧生物质气化气对锅炉性能的影响分析[J]. 电力学报, 2021, 36(5): 397-403. |
WANG Shuangqi, TIAN Yu, GONG Yingli, et al. Analysis on effect of boiler performance of mixed burning biomass gasification gas in a 330MW pulverized coal boiler[J]. Journal of Electric Power, 2021, 36(5): 397-403. | |
24 | 陈明燕. 1000MW级S-CO2煤粉锅炉NO x 生成特性与超低排放方案研究[D]. 南京: 东南大学, 2021. |
CHEN Mingyan. Research on NO x generation mechanism and ultra-low emission scheme of 1000MW S-CO2 pulverized coal boiler[D]. Nanjing: Southeast University, 2021. | |
25 | 李凡. 600MW煤粉锅炉煤粉与污泥混燃数值模拟研究[D]. 太原: 太原理工大学, 2021. |
LI Fan. Numerical simulation on co-combustion of pulverized coal with sludge in a 600MW coal-fired boiler[D]. Taiyuan: Taiyuan University of Technology, 2021. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |