Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5162-5178.DOI: 10.16085/j.issn.1000-6613.2022-2022
• Industrial catalysis • Previous Articles Next Articles
WU Yiheng(), ZHANG Yaoyuan(), WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng()
Received:
2022-10-31
Revised:
2023-01-23
Online:
2023-11-11
Published:
2023-10-15
Contact:
ZHANG Yaoyuan, LI Hansheng
吴毅恒(), 张耀远(), 吴芹, 史大昕, 陈康成, 黎汉生()
通讯作者:
张耀远,黎汉生
作者简介:
吴毅恒(1999—),女,硕士研究生,研究方向为低碳烷烃芳构化。E-mail:3120211313@bit.edu.cn。
基金资助:
CLC Number:
WU Yiheng, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Research progress of gallium modified HZSM-5 catalysts for aromatization of light alkanes[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5162-5178.
吴毅恒, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 镓改性HZSM-5催化低碳烷烃芳构化研究进展[J]. 化工进展, 2023, 42(10): 5162-5178.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2022
催化剂组成 | 温度/℃ | 原料组成 | 重时空速/h-1 | 烷烃转化率/% | 芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|---|
GaZSM-5 | 550 | 丙烷 | 4.0 | 66.5 | 58.6 | [ |
GaLaZSM-5 | 550 | 丙烷 | 4.0 | 57.7 | 57.9 | [ |
GaPdZSM-5 | 550 | 丙烷 | 4.0 | 79.6 | 66.0 | [ |
GaAgZSM-5 | 550 | 丙烷 | 4.0 | 78.3 | 66.6 | [ |
NiZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 25.0 | 70.0 BTX选择性 | [ |
GaZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 8.0 | 84.0 BTX选择性 | [ |
Ni1Ga1ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 13.0 | 82.5 BTX选择性 | [ |
Ni1Ga1/3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 7.5 | 75.0 BTX选择性 | [ |
Ni1Ga3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 10.0 | 81.0 BTX选择性 | [ |
Mo/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 30.0 | 21.9 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 31.0 | 23.3 苯+甲苯选择性 | [ |
Pt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 9.0 | 2.1 苯+甲苯选择性 | [ |
GaPt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 90.0 | 31.1 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 55.4 | 59.3 BTX选择性 | [ |
Pt/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 87.9 | 29.8 BTX选择性 | [ |
Pt-Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 64.9 | 52.2 BTX选择性 | [ |
GaZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 32.0 | 28.0 | [ |
GaPtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 63.0 | 32.0 | [ |
PtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 55.0 | 37.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
0.3% Pt-2% Ga/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
HZSM-5 | 600 | 乙烷 | — | 8.4 | 27.0 | [ |
0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 28.0 | 52.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
2% Ga 0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 47.0 | 51.5 BTX选择性 | [ |
1Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.0 | 53.0 BTX选择性 | [ |
2Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 51.0 | 56.0 BTX选择性 | [ |
4Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 57.5 BTX选择性 | [ |
8Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 54.0 BTX选择性 | [ |
Ga/2CrZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 39.5 | 52.0 BTX选择性 | [ |
2Cr-Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 41.0 | 49.0 BTX选择性 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.4 | 24.9 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.5 | 26.7 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 14.6 | 41.8 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 17.1 | 42.6 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 24.6 | 55.5 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 23.3 | 49.8 | [ |
Ga/ZSM-5/P(0.4) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 19.2 | 59.7 | [ |
Ga/ZSM-5/P(0.2) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 15.5 | 50.6 | [ |
Ga/ZSM-5/P(1.6) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 9.8 | 47.0 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 2.7 | 21.2 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 0.5 | 20.7 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.1 | 42.3 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 23.3 | 30.1 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 22.3 | 25.3 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 27.5 | 31.1 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 29.9 | 16.5 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 35.8 | 16.5 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 26.4 | 10.7 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.7 | 18.9 | [ |
催化剂组成 | 温度/℃ | 原料组成 | 重时空速/h-1 | 烷烃转化率/% | 芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|---|
GaZSM-5 | 550 | 丙烷 | 4.0 | 66.5 | 58.6 | [ |
GaLaZSM-5 | 550 | 丙烷 | 4.0 | 57.7 | 57.9 | [ |
GaPdZSM-5 | 550 | 丙烷 | 4.0 | 79.6 | 66.0 | [ |
GaAgZSM-5 | 550 | 丙烷 | 4.0 | 78.3 | 66.6 | [ |
NiZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 25.0 | 70.0 BTX选择性 | [ |
GaZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 8.0 | 84.0 BTX选择性 | [ |
Ni1Ga1ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 13.0 | 82.5 BTX选择性 | [ |
Ni1Ga1/3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 7.5 | 75.0 BTX选择性 | [ |
Ni1Ga3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 10.0 | 81.0 BTX选择性 | [ |
Mo/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 30.0 | 21.9 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 31.0 | 23.3 苯+甲苯选择性 | [ |
Pt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 9.0 | 2.1 苯+甲苯选择性 | [ |
GaPt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 90.0 | 31.1 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 55.4 | 59.3 BTX选择性 | [ |
Pt/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 87.9 | 29.8 BTX选择性 | [ |
Pt-Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 64.9 | 52.2 BTX选择性 | [ |
GaZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 32.0 | 28.0 | [ |
GaPtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 63.0 | 32.0 | [ |
PtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 55.0 | 37.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
0.3% Pt-2% Ga/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
HZSM-5 | 600 | 乙烷 | — | 8.4 | 27.0 | [ |
0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 28.0 | 52.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
2% Ga 0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 47.0 | 51.5 BTX选择性 | [ |
1Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.0 | 53.0 BTX选择性 | [ |
2Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 51.0 | 56.0 BTX选择性 | [ |
4Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 57.5 BTX选择性 | [ |
8Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 54.0 BTX选择性 | [ |
Ga/2CrZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 39.5 | 52.0 BTX选择性 | [ |
2Cr-Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 41.0 | 49.0 BTX选择性 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.4 | 24.9 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.5 | 26.7 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 14.6 | 41.8 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 17.1 | 42.6 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 24.6 | 55.5 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 23.3 | 49.8 | [ |
Ga/ZSM-5/P(0.4) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 19.2 | 59.7 | [ |
Ga/ZSM-5/P(0.2) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 15.5 | 50.6 | [ |
Ga/ZSM-5/P(1.6) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 9.8 | 47.0 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 2.7 | 21.2 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 0.5 | 20.7 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.1 | 42.3 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 23.3 | 30.1 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 22.3 | 25.3 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 27.5 | 31.1 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 29.9 | 16.5 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 35.8 | 16.5 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 26.4 | 10.7 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.7 | 18.9 | [ |
1 | 吴冰峰, 王子健, 马爱增, 等. 低碳烷烃芳构化反应机理研究进展[J]. 石油学报(石油加工), 2021, 37(3): 690-699. |
WU Bingfeng, WANG Zijian, MA Aizeng, et al. Research progress in the mechanism of light alkane aromatization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 690-699. | |
2 | WANG Kai, DONG Mei, LI Junfen, et al. Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7(3): 560-564. |
3 | ZHANG Peipei, TAN Li, YANG Guohui, et al. One-pass selective conversion of syngas to para-xylene[J]. Chemical Science, 2017, 8(12): 7941-7946. |
4 | WANG Yang, GAO Weizhe, KAZUMI S, et al. Direct and oriented conversion of CO2 into value-added aromatics[J]. Chemistry, 2019, 25(20): 5149-5153. |
5 | HE Peng, WANG Aiguo, MENG Shijun, et al. Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5[J]. Catalysis Today, 2019, 323: 94-104. |
6 | WANG C, ZHAO X L, HU M, et al. Unraveling hydrocarbon pool boosted propane aromatization on gallium/ZSM-5 zeolite by solid-state nuclear magnetic resonance spectroscopy[J]. Angewandte Chemie-International Edition, 2021, 60(44): 23630-23634. |
7 | TU C Y, FAN H H, WANG D, et al. CO2-assisted ethane aromatization over zinc and phosphorous modified ZSM-5 catalysts[J]. Applied Catalysis B-Environmental, 2022, 304: 120956. |
8 | LIM Y H, GIM M Y, KIM H, et al. Top-down HCl treatment to prepare highly active Ga species in Ga/ZSM-5 for propane aromatization[J]. Fuel Processing Technology, 2022, 227: 107107. |
9 | GOODARZI F, THUMBAYIL R P, ENEMARK‐RASMUSSEN K, et al. Enhanced catalytic performance of Zn‐containing HZSM‐5 upon selective desilication in ethane dehydroaromatization process[J]. ChemCatChem, 2020, 12(5): 1519-1526. |
10 | LEE B J, LEE J H, KIM D H, et al. Synthesis of aluminum and gallium-incorporated MFI zeotypes and their catalytic activity for ethane dehydroaromatization[J]. Microporous and Mesoporous Materials, 2021, 323: 111243. |
11 | BOGDAN V I, KOKLIN A E, MISHANIN I I, et al. Increasing the yield of aromatic hydrocarbons in aromatization of n-butane over Ga/H-ZSM-5 zeolite using a palladium membrane[J]. Mendeleev Communications, 2021, 31(2): 230-232. |
12 | SAITO H, INAGAKI S, KOJIMA K, et al. Preferential dealumination of Zn/H-ZSM-5 and its high and stable activity for ethane dehydroaromatization[J]. Applied Catalysis A-General, 2018, 549: 76-81. |
13 | LIANG Tingyu, TOGHIANI H, XIANG Yizhi. Transient kinetic study of ethane and ethylene aromatization over Zinc-exchanged HZSM5 catalyst[J]. Industrial And Engineering Chemistry Research, 2018, 57(45): 15301-15309. |
14 | MA L, ZOU X Q. Cooperative catalysis of metal and acid functions in re-HZSM-5 catalysts for ethane dehydroaromatization[J]. Applied Catalysis B-Environmental, 2019, 243: 703-710. |
15 | HALASZ J, KONYA Z, FUDALA A, et al. Indium and gallium containing ZSM-5 zeolites: Acidity and catalytic activity in propane transformation[J]. Catalysis Today, 1996, 31(3/4): 293-304. |
16 | 周微. Fe、Sn助剂对载铂Zn/HZSM-5纳米沸石丙烷芳构化催化剂的调变作用研究[D]. 大连: 大连理工大学, 2019. |
ZHOU Wei, Effects of Fe or Sn additives on propane aromatization performance of Pt promoted Zn/HZSM-5 nano-zeolite catalyst[D]. Dalian: Dalian University of Technology, 2019. | |
17 | 赵星岭. Ga改性ZSM-5分子筛上低碳烷烃活化与转化机理的固体核磁共振研究[D]. 武汉: 中国科学院大学(中国科学院武汉物理与数学研究所), 2020. |
ZHAO Xingling. Activation and conversion of light alkane over gallium-modified ZSM-5 zeolites as studied by solid-state NMR spectroscopy[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), 2020. | |
18 | 曾武松. 正丁烷无氧芳构化ZSM-5催化剂的研究[D]. 乌鲁木齐: 新疆大学, 2020. |
ZENG Wusong. Study on ZSM-5 catalyst for n-butane non-oxidative aromatization[D]. Urumqi: Xinjiang University, 2020. | |
19 | ONO Y, NAKATANI H, KITAGAWA H, et al. The role of metal cations in the transformation of lower alkanes into aromatic hydrocarbons[J]. Studies in Surface Science and Catalysis, 1989, 44: 279-290. |
20 | LUKYANOV D B, GNEP N S, GUISNET M R. Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5[J]. Industrial & Engineering Chemistry Research, 1995, 34(2): 516-523. |
21 | CAEIRO G, CARVALHO R H, WANG X Q, et al. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2006, 255(1/2): 131-158. |
22 | LIU Dongyang, CAO Liyuan, ZHANG Guohao, et al. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts-A review[J]. Fuel Processing Technology, 2021, 216: 106770. |
23 | KITAGAWA H, SENDODA Y, ONO Y. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. Journal of Catalysis, 1986, 101(1): 12-18. |
24 | MOLE T, ANDERSON J, CREER G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Applied catalysis, 1985, 17(1): 141-154. |
25 | GUISNET M, GNEP N S. Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation[J]. Catalysis Today, 1996, 31(3/4): 275-292. |
26 | RAAD M, HAMIEH S, TOUFAILY J, et al. Propane aromatization on hierarchical Ga/HZSM-5 catalysts[J]. Journal of Catalysis, 2018, 366: 223-236. |
27 | XIAO He, ZHANG Junfeng, WANG Xiaoxing, et al. A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization[J]. Catalysis Science & Technology, 2015, 5(8): 4081-4090. |
28 | WANG Yuxin, CAIOLA A, ROBINSON B, et al. Hierarchical galloaluminosilicate MFI catalysts for ethane nonoxidative dehydroaromatization[J]. Energy & Fuels, 2020, 34(3): 3100-3109. |
29 | AUSAVASUKHI A, SOOKNOI T. Tunable activity of [Ga]HZSM-5 with H2 treatment: Ethane dehydrogenation[J]. Catalysis Communications, 2014, 45: 63-68. |
30 | SCHREIBER M W, PLAISANCE C P, BAUMGÄRTL M, et al. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes[J]. Journal of the American Chemical Society, 2018, 140(14): 4849-4859. |
31 | JOSHI Y, THOMSON K. High ethane dehydrogenation activity of [GaH]2+ Al pair sites in Ga/H-[Al]ZSM-5: A DFT thermochemical analysis of the catalytic sites under reaction conditions[J]. Journal of Catalysis, 2007, 246(2): 249-265. |
32 | 赵星岭, 齐国栋, 王强, 等. Ga改性Ga/ZSM-5分子筛的结构、性质及其催化丙烷芳构化的固体核磁共振波谱研究[J]. 高等学校化学学报, 2020, 41(12): 2681-2689. |
ZHAO Xingling, QI Guodong, WANG Qiang, et al. Structure, nature and activity of Ga species for propane aromatization in Ga/ZSM-5 revealed by solid-state NMR spectroscopy[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2681-2689. | |
33 | AL-YASSIR N, AKHTAR M N, AL-KHATTAF S. Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5[J]. Journal of Porous Materials, 2011, 19(6): 943-960. |
34 | 刘汝玲, 朱华青, 吴志伟, 等. Ga改性ZSM-5分子筛催化丙烷芳构化性能研究[J]. 燃料化学学报, 2015, 43(8): 961-969. |
LIU Ruling, ZHU Huaqing, WU Zhiwei, et al. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 961-969. | |
35 | HAMID S, DEROUANE E G, MERIAUDEAU P, et al. Effect of reductive and oxidative atmospheres on the propane aromatisation activity and selectivity of Ga/H-ZSM-5 catalysts[J]. Catalysis Today, 1996, 31(3/4): 327-334. |
36 | NOWAK I. Effect of H2-O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts[J]. Applied Catalysis A: General, 2003, 251(1): 107-120. |
37 | CHOUDHARY T V, KINAGE A, BANERJEE S, et al. Propane conversion to aromatics on highly active H-GaAlMFI: Effect of thermal pretreatment[J]. Energy & Fuels, 2006, 20(3): 919-922. |
38 | GIANNETTO G, LEON G, PAPA J, et al. Preparation of acidic or bifunctional catalysts by means of straightforward calcination of as-synthesized [Ga]-ZSM-5 zeolites obtained from alkali-free media. Propane aromatization[J]. Catalysis Letters, 1993, 22(4): 381-386. |
39 | NISHI K, KOMAI S I, INAGAKI K, et al. Structure and catalytic properties of Ga-MFI in propane aromatization[J]. Applied Catalysis A-General, 2002, 223(1): 187-193. |
40 | MATSUOKA A, SAKUMA S, ONODERA M, et al. Effects of Ga content and reaction pressure upon the aromatization of propane over H-Ga-Al-bimetallosilicate catalysts[J]. Journal of Porous Materials, 2012, 20(2): 367-373. |
41 | PHATANASRI S, PRASERTHDAM P, SRIPUSITTO A. Aromatization of light paraffins over Ga-containing MFI-type catalyst[J]. Korean Journal of Chemical Engineering, 2000, 17(4): 409-413. |
42 | RAHMAN M, INFANTES-MOLINA A, HOFFMAN A S, et al. Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization[J]. Fuel, 2020, 278: 118290. |
43 | LEE B J, HUR Y G, KIM D H, et al. Non-oxidative aromatization and ethylene formation over Ga/HZSM-5 catalysts using a mixed feed of methane and ethane[J]. Fuel, 2019, 253: 449-459. |
44 | CHOUDHARY V R, MANTRI K, SIVADINARAYANA C. Influence of various catalyst factors on time-on-stream activity of Ga/H-ZSM-5 in propane aromatization[J]. Indian Journal of Chemical Technology, 1999, 6(3): 166-171. |
45 | GIM M Y, SONG C, LIM Y H, et al. Effect of the Si/Al ratio in Ga/mesoporous HZSM-5 on the production of benzene, toluene, and xylene via coaromatization of methane and propane[J]. Catalysis Science & Technology, 2019, 9(22): 6285-6296. |
46 | JIA Yanming, WANG Junwen, ZHANG Kan, et al. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol[J]. Powder Technology, 2018, 328: 415-429. |
47 | WANNAPAKDEE W, WATTANAKIT C, PALUKA V, et al. One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization[J]. RSC Advances, 2016, 6(4): 2875-2881. |
48 | HAN Jing, JIANG Guiyuan, HAN Shanlei, et al. The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane into light olefins and aromatics[J]. Catalysts, 2016, 6(1): 13. |
49 | XIAO He, ZHANG Junfeng, WANG Peng, et al. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization[J]. RSC Advances, 2015, 5(112): 92222-92233. |
50 | 朱华青, 翟效珍, 王建国. 第二组分改性Ga/HZSM-5催化剂芳构化性能研究[J]. 燃料化学学报, 1999, 27(S1): 75-79. |
ZHU Huaqing, ZHAI Xiaozhen, WANG Jianguo. Study on aromatization over Ga/HZSM-5 catalysis modified by second components[J]. Journal of Fuel Chemistry and Technology, 1999, 27(S1): 75-79. | |
51 | FADAEERAYENI S, SHAN J J, SARNELLO E, et al. Nickel/gallium modified HZSM-5 for ethane aromatization: Influence of metal function on reactivity and stability[J]. Applied Catalysis A: General, 2020, 601: 117629. |
52 | SAMANTA A, BAI X W, ROBINSON B, et al. Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11006-11012. |
53 | 曹荣, 侯震山, 赵洪, 等. Pt-Ga/HZSM-5催化剂上丙烷芳构化[J]. 物理化学学报, 1996, 12(2): 114-118. |
CAO Rong, HOU Zhenshan, ZHAO Hong, Propane aromatization over Pt-Ga/HZSM-5 catalyst[J]. Acta Physico-Chimica Sinica, 1996, 12(2): 114-118. | |
54 | CAIOLA A, ROBINSON B, BAI X W, et al. Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11421-11431. |
55 | LAPIDUS A L, MIKHAILOV M N, DERGACHEV A A, et al. Structure of active sites of Ga-Pt zeolite catalysts of alkane aromatization[J]. Doklady Physical Chemistry, 2006, 408(2): 175-177. |
56 | MIKHAILOV M N, DERGACHEV A A, MISHIN I V, et al. The role played by Ga-Pt nanoparticles in the aromatization of lower alkanes on ZSM-5 zeolites[J]. Russian Journal of Physical Chemistry A Focus on Chemistry, 2008, 82(4): 612-618. |
57 | XU Bing, TAN Minghui, WU Xuemei, et al. Propane aromatization tuned by tailoring Cr modified Ga/ZSM‐5 catalysts[J]. ChemCatChem, 2021, 13(16): 3601-3610. |
58 | GOMEZ E, NIE X W, LEE J H, et al. Tandem reactions of CO2 reduction and ethane aromatization[J]. Journal of the American Chemical Society, 2019, 141(44): 17771-17782. |
59 | NIU Xiaoran, NIE Xiaowa, YANG Chunhui, et al. CO2-Assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts[J]. Catalysis Science & Technology, 2020, 10(6): 1881-1888. |
60 | ZHAO Y H, CAO C Y. The effect of hydrothermal treatment on the aromatization performance of HZSM-5 modified by Zn, P[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(1): 76-83. |
61 | 樊华华. Zn/P-ZSM-5催化二氧化碳串联乙烷芳构化机理研究[D]. 大连: 大连理工大学, 2021. |
FAN Huahua. Mechanistic study of the tandem reaction of CO2 and ethane aromatization over Zn/P-ZSM-5 catalyst[D]. Dalian: Dalian University of Technology, 2021. | |
62 | 付红英. 低碳烷烃芳构化催化剂研究[D]. 大庆: 大庆石油学院, 2009. |
FU Hongying. Study on catalysts for aromatization of light alkane[D]. Daqing: Daqing Petroleum Institute, 2009. | |
63 | KUMAR N, LINDFORS L E. Synthesis of Ga-and Zn-H-ZSM-5 zeolite catalysts using Ga-and Zn-impregnated γ-Al2O3 for the transformation of n-butane to aromatic hydrocarbons[J]. Studies in Surface Science & Catalysis, 1995, 94: 325-332. |
64 | CHOUDHARY T V, KINAGE A, BANERJEE S, et al. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1/2): 79-84. |
65 | BUCKLES G, HUTCHINGS G J. Evidence for the reversible formation of a catalytic active site for propane aromatization for Ga2O3/H-ZSM-5[J]. Catalysis Letters, 1994, 27(3): 361-367. |
66 | BUCKLES G J, HUTCHINGS G J. Conversion of propane using H-ZSM-5 and Ga H-ZSM-5 in the presence of Ga-H-ZSM-5 in the presence of co-fed nitric oxide, oxygen, and hydrogen[J]. Journal of Catalysis, 1995, 151(1): 33-43. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |