Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 236-246.DOI: 10.16085/j.issn.1000-6613.2022-0511
• Industrial catalysis • Previous Articles Next Articles
LI Pan1,2,3(), WANG Biao1,2,3, XU Junhao1, WANG Xianhua4, HU Junhao1,2,3(), SONG Jiande2, BAI Jing1,2,3, CHANG Chun1,2,3
Received:
2022-03-29
Revised:
2022-05-20
Online:
2023-02-20
Published:
2023-01-25
Contact:
HU Junhao
李攀1,2,3(), 王彪1,2,3, 徐骏浩1, 王贤华4, 胡俊豪1,2,3(), 宋建德2, 白净1,2,3, 常春1,2,3
通讯作者:
胡俊豪
作者简介:
李攀(1987—),男,副教授,研究方向为生物质资源化利用。E-mail:lipanhust@163.com。
基金资助:
CLC Number:
LI Pan, WANG Biao, XU Junhao, WANG Xianhua, HU Junhao, SONG Jiande, BAI Jing, CHANG Chun. Research progress on carbon deposition of catalysts for biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246.
李攀, 王彪, 徐骏浩, 王贤华, 胡俊豪, 宋建德, 白净, 常春. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0511
催化剂 | 生物质原料 | 处理方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZSM-5 | 呋喃 | 催化热解 | 部分积炭具有催化活性为活性积炭,ZSM-5容易积炭 | [ |
多层纳米ZSM-5片,HZSM-5 | 纤维素 | 蒸汽热解 | 积炭沉积在催化剂的微孔阻碍活性位点,可以通过增加中孔降低失活率 | [ |
La、Pr、Ce、Y、Gd、Zr改性Ni | 木质纤维素 | 快速催化热解 | La改性Ni催化剂具有较大孔径、适度酸性和最佳的抗积炭性能 | [ |
ZSM-5 | 木质素 | 催化热解 | H2氛围中,催化剂积炭较少 | [ |
USY | 半纤维素 | 催化热解 | USY酸性较强,孔道狭窄易积炭,但在高压反应条件下促进物质扩散,减少积炭生成 | [ |
HZSM-5 | 柳枝稷和 聚乙烯 | 催化共热解 | 聚乙烯衍生的烃蒸气有助于减少积炭的形成,HZSM-5积炭严重,脱氧率高 | [ |
镍/渣(镁渣钢渣、高炉渣、 黄铁矿渣、硅酸钙渣) | 松锯末 | 热解催化重整 | 在催化剂测试中负载在镁渣上的镍活性最高,反应过程中生成石墨碳和无定形碳 | [ |
白云石 | 松木 | 催化热解 | 白云石不易积炭,但催化性能较弱,生物油等产品产率低 | [ |
碳基催化剂 | 纤维素 | 微波催化热解 | 微波与碳基催化剂的协同作用可以有效抑制积炭生成,但碳基催化剂本身易积炭失活 | [ |
整体式催化剂 | 牛粪 | 催化热解 | 积炭沉积在外表面,目标产物产率更高,催化剂回收、再生效率更高 | [ |
CoO、Cr2O3、CuO、Fe2O3、 Mn2O3、NiO、TiO2、V2O5和CeO2 | 白杨 | 催化热解 | 不同的金属氧化物,积炭行为不同,V-、Mn-、Cu-和Co-基容易形成积炭 | [ |
催化剂 | 生物质原料 | 处理方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZSM-5 | 呋喃 | 催化热解 | 部分积炭具有催化活性为活性积炭,ZSM-5容易积炭 | [ |
多层纳米ZSM-5片,HZSM-5 | 纤维素 | 蒸汽热解 | 积炭沉积在催化剂的微孔阻碍活性位点,可以通过增加中孔降低失活率 | [ |
La、Pr、Ce、Y、Gd、Zr改性Ni | 木质纤维素 | 快速催化热解 | La改性Ni催化剂具有较大孔径、适度酸性和最佳的抗积炭性能 | [ |
ZSM-5 | 木质素 | 催化热解 | H2氛围中,催化剂积炭较少 | [ |
USY | 半纤维素 | 催化热解 | USY酸性较强,孔道狭窄易积炭,但在高压反应条件下促进物质扩散,减少积炭生成 | [ |
HZSM-5 | 柳枝稷和 聚乙烯 | 催化共热解 | 聚乙烯衍生的烃蒸气有助于减少积炭的形成,HZSM-5积炭严重,脱氧率高 | [ |
镍/渣(镁渣钢渣、高炉渣、 黄铁矿渣、硅酸钙渣) | 松锯末 | 热解催化重整 | 在催化剂测试中负载在镁渣上的镍活性最高,反应过程中生成石墨碳和无定形碳 | [ |
白云石 | 松木 | 催化热解 | 白云石不易积炭,但催化性能较弱,生物油等产品产率低 | [ |
碳基催化剂 | 纤维素 | 微波催化热解 | 微波与碳基催化剂的协同作用可以有效抑制积炭生成,但碳基催化剂本身易积炭失活 | [ |
整体式催化剂 | 牛粪 | 催化热解 | 积炭沉积在外表面,目标产物产率更高,催化剂回收、再生效率更高 | [ |
CoO、Cr2O3、CuO、Fe2O3、 Mn2O3、NiO、TiO2、V2O5和CeO2 | 白杨 | 催化热解 | 不同的金属氧化物,积炭行为不同,V-、Mn-、Cu-和Co-基容易形成积炭 | [ |
元素分析 | 积炭的碳、氢、硫、氮含量,氢碳原子比 |
---|---|
TGA | 积炭含量、类型 |
TGA+IR | 积炭分解情况 |
TPO | 积炭类型、部位 |
TEOM | 积炭失重动力学 |
IR、Raman | 积炭组成(脂肪碳、芳香碳), 酸中心失活情况 |
UV-Vis | 积炭组成(烯烃碳、碳正离子) |
FTIR | 积炭结构和组成 |
1H NMR | 积炭组成(脂肪碳、芳香碳) |
13C MAS NMR | 积炭组成(脂肪碳、芳香碳) |
ESR | 积炭组成、自由基信息 |
SEM、TEM | 积炭部分及分布 |
XPS | 积炭部分(表面)、形貌 |
XRD | 积炭晶形 |
索氏抽提+GC/MS | 可溶性积炭的化学组成 |
分子筛酸溶解法+GC/MS | 积炭的化学组成 |
液氮物理吸附+孔容分析 | 积炭部位(孔道内分布) |
元素分析 | 积炭的碳、氢、硫、氮含量,氢碳原子比 |
---|---|
TGA | 积炭含量、类型 |
TGA+IR | 积炭分解情况 |
TPO | 积炭类型、部位 |
TEOM | 积炭失重动力学 |
IR、Raman | 积炭组成(脂肪碳、芳香碳), 酸中心失活情况 |
UV-Vis | 积炭组成(烯烃碳、碳正离子) |
FTIR | 积炭结构和组成 |
1H NMR | 积炭组成(脂肪碳、芳香碳) |
13C MAS NMR | 积炭组成(脂肪碳、芳香碳) |
ESR | 积炭组成、自由基信息 |
SEM、TEM | 积炭部分及分布 |
XPS | 积炭部分(表面)、形貌 |
XRD | 积炭晶形 |
索氏抽提+GC/MS | 可溶性积炭的化学组成 |
分子筛酸溶解法+GC/MS | 积炭的化学组成 |
液氮物理吸附+孔容分析 | 积炭部位(孔道内分布) |
催化剂 | 原料 | 表征方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZSM-5 | 呋喃 | 原位漫反射傅里叶变换红外光谱(DRIFTS) | 在呋喃热解中,活性积炭的主要成分是聚甲基苯甲醛 | [ |
Ni/HZSM-5 | 典型塑料 | 扫描电镜(SEM) | 失活催化剂表面粗糙、模糊,沟壑丛生,团聚现象明显 | [ |
Ni/MCM-41 | 木屑 | 透射电镜(TEM) | MCM-41具有长而有序的中孔结构,Ni颗粒均匀分散在MCM-41载体中 | [ |
Ni/CeO2-Al2O3 | 生物油/生物甘油混合物 | X射线衍射(XRD) | Ni呈现最强峰,贵金属的掺入没有影响催化剂尺寸;Ni/CeO2-Al2O3是更耐失活和积炭的催化剂 | [ |
Ni/La2O3-α-Al2O3 | 松木屑 | 氧化程序升温(TPO) | 沉积在Ni/La2O3-α-Al2O3的积炭主要有两种包封状积炭和丝状积炭 | [ |
Ni/ZSM-5,Ni/MCF,Ni/ZrO2 | 纤维素 | 热重分析(TG) | Ni/ZrO的积炭量比Ni/ZSM-5、Ni/MCF少两倍,积炭量最小。并在400~600℃时,大部分积炭被除去 | [ |
催化剂 | 原料 | 表征方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZSM-5 | 呋喃 | 原位漫反射傅里叶变换红外光谱(DRIFTS) | 在呋喃热解中,活性积炭的主要成分是聚甲基苯甲醛 | [ |
Ni/HZSM-5 | 典型塑料 | 扫描电镜(SEM) | 失活催化剂表面粗糙、模糊,沟壑丛生,团聚现象明显 | [ |
Ni/MCM-41 | 木屑 | 透射电镜(TEM) | MCM-41具有长而有序的中孔结构,Ni颗粒均匀分散在MCM-41载体中 | [ |
Ni/CeO2-Al2O3 | 生物油/生物甘油混合物 | X射线衍射(XRD) | Ni呈现最强峰,贵金属的掺入没有影响催化剂尺寸;Ni/CeO2-Al2O3是更耐失活和积炭的催化剂 | [ |
Ni/La2O3-α-Al2O3 | 松木屑 | 氧化程序升温(TPO) | 沉积在Ni/La2O3-α-Al2O3的积炭主要有两种包封状积炭和丝状积炭 | [ |
Ni/ZSM-5,Ni/MCF,Ni/ZrO2 | 纤维素 | 热重分析(TG) | Ni/ZrO的积炭量比Ni/ZSM-5、Ni/MCF少两倍,积炭量最小。并在400~600℃时,大部分积炭被除去 | [ |
催化剂 | 生物质原料 | 处理方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZrO2改性ZSM-5挤出物 | 橡木 | 热解和蒸汽升级催化 | 积炭沉积为蛋壳空间分布,起初积炭在B酸上形成,促进深度脱氧和裂解,然后积炭沉积在外表面,在ZrO2上形成更多富氢积炭 | [ |
Ni/La2O3-Al2O3、Ni/Al2O3和商业镍催化剂(G90-LDP) | 松木废料 | 热解催化重整 | 生成无定形积炭,La2O3使积炭气化,其碱性和吸水能力可抑制积炭生成 | [ |
Ni/镁渣和Ni/γ-Al2O3 | 松锯末 | 热解催化重整 | Ni/镁渣的积炭率、石墨化程度较低,抗积炭能力较强 | [ |
MCM-41/ZSM-5 | 纤维素、木质素和向日葵茎 | 生物油原位催化升级 | MCM-41作为积炭沉积的牺牲层降低了 ZSM-5的失活率 | [ |
Na、Mg、La改性Ni/SiO2 | 愈创木酚 | 蒸汽重整 | La改性Ni/SiO2催化剂后积炭量最低 | [ |
HZSM-5、Fe/ZSM-5、Ni/ZSM-5和FeNi/ZSM-5 | 软木锯末 | 热解和蒸汽升级催化 | 积炭形成取决于酸性位点强度和金属,FeNi/ZSM-5催化时产品的芳烃产率高,积炭量少 | [ |
酸脱铝、化学液相沉积改性ZSM-5 | 松锯末 | 热解催化重整 | 改性后催化剂积炭重要前驱体生成量减少40%左右,有效抑制积炭的生成 | [ |
化学液相沉积改性HZSM-5 | 竹子 | 微波催化热解 | 催化剂比表面积增加10%,积炭量明显减少 | [ |
HF脱铝HZSM-5 | 纤维素 | 快速催化热解 | 脱铝过程中布朗斯台德酸位点的减少,积炭量大幅减少,芳烃产率增加44.9% | [ |
碱洗HZSM-5减弱酸度、增加介孔结构 | 稻壳 | 微波催化热解 | 碱洗后,催化剂外表面强酸位点减少,内表面为弱酸环境,积炭生成量减少4.6% | [ |
CaO、碱洗HZSM-5 | 竹子和废旧轮胎 | 共热解 | 双重催化显著提升目标产物相对含量,并抑制因酸性过强而产生的积炭等不良产物 | [ |
催化剂 | 生物质原料 | 处理方法 | 结论 | 参考文献 |
---|---|---|---|---|
ZrO2改性ZSM-5挤出物 | 橡木 | 热解和蒸汽升级催化 | 积炭沉积为蛋壳空间分布,起初积炭在B酸上形成,促进深度脱氧和裂解,然后积炭沉积在外表面,在ZrO2上形成更多富氢积炭 | [ |
Ni/La2O3-Al2O3、Ni/Al2O3和商业镍催化剂(G90-LDP) | 松木废料 | 热解催化重整 | 生成无定形积炭,La2O3使积炭气化,其碱性和吸水能力可抑制积炭生成 | [ |
Ni/镁渣和Ni/γ-Al2O3 | 松锯末 | 热解催化重整 | Ni/镁渣的积炭率、石墨化程度较低,抗积炭能力较强 | [ |
MCM-41/ZSM-5 | 纤维素、木质素和向日葵茎 | 生物油原位催化升级 | MCM-41作为积炭沉积的牺牲层降低了 ZSM-5的失活率 | [ |
Na、Mg、La改性Ni/SiO2 | 愈创木酚 | 蒸汽重整 | La改性Ni/SiO2催化剂后积炭量最低 | [ |
HZSM-5、Fe/ZSM-5、Ni/ZSM-5和FeNi/ZSM-5 | 软木锯末 | 热解和蒸汽升级催化 | 积炭形成取决于酸性位点强度和金属,FeNi/ZSM-5催化时产品的芳烃产率高,积炭量少 | [ |
酸脱铝、化学液相沉积改性ZSM-5 | 松锯末 | 热解催化重整 | 改性后催化剂积炭重要前驱体生成量减少40%左右,有效抑制积炭的生成 | [ |
化学液相沉积改性HZSM-5 | 竹子 | 微波催化热解 | 催化剂比表面积增加10%,积炭量明显减少 | [ |
HF脱铝HZSM-5 | 纤维素 | 快速催化热解 | 脱铝过程中布朗斯台德酸位点的减少,积炭量大幅减少,芳烃产率增加44.9% | [ |
碱洗HZSM-5减弱酸度、增加介孔结构 | 稻壳 | 微波催化热解 | 碱洗后,催化剂外表面强酸位点减少,内表面为弱酸环境,积炭生成量减少4.6% | [ |
CaO、碱洗HZSM-5 | 竹子和废旧轮胎 | 共热解 | 双重催化显著提升目标产物相对含量,并抑制因酸性过强而产生的积炭等不良产物 | [ |
催化剂 | 再生方法 | 结论 | 参考文献 |
---|---|---|---|
ZSM-5 | 臭氧低温再生 | 失活催化剂上几乎97.4%的积炭完全去除;催化剂骨架保持良好 | [ |
工业废弃催化剂 | 溶剂萃取方法 | 可在低温下有效除去催化剂孔道中的积炭,再生活性高 | [ |
Pt-Sn/γ-Al2O3 | 氢气、氮气吹扫 | 氢气再生,去除积炭的低密度组分,积炭流动性更高,活性位点可及性更强 | [ |
MnO x -CeO2 | NO2氛围灼烧 | 积炭在350~400℃时被除去,比常规空气灼烧再生低200℃左右 | [ |
BaZr/Fe | CO2氛围灼烧 | 催化剂内部和表面的积炭被部分去除,再生的催化剂恢复部分活性,稳定性较好 | [ |
沸石催化剂 | 非热等离子体再生 | 低能量的非热等离子体在293K温度下实现催化剂完全再生,去除积炭 | [ |
催化剂 | 再生方法 | 结论 | 参考文献 |
---|---|---|---|
ZSM-5 | 臭氧低温再生 | 失活催化剂上几乎97.4%的积炭完全去除;催化剂骨架保持良好 | [ |
工业废弃催化剂 | 溶剂萃取方法 | 可在低温下有效除去催化剂孔道中的积炭,再生活性高 | [ |
Pt-Sn/γ-Al2O3 | 氢气、氮气吹扫 | 氢气再生,去除积炭的低密度组分,积炭流动性更高,活性位点可及性更强 | [ |
MnO x -CeO2 | NO2氛围灼烧 | 积炭在350~400℃时被除去,比常规空气灼烧再生低200℃左右 | [ |
BaZr/Fe | CO2氛围灼烧 | 催化剂内部和表面的积炭被部分去除,再生的催化剂恢复部分活性,稳定性较好 | [ |
沸石催化剂 | 非热等离子体再生 | 低能量的非热等离子体在293K温度下实现催化剂完全再生,去除积炭 | [ |
1 | GARCIA G P, ARRIOLA E, CHEN W H, et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability[J]. Energy, 2021, 217: 119384. |
2 | 姜克隽,冯升波. 走向《巴黎协定》温升目标: 已经在路上[J]. 气候变化研究进展, 2021, 17(1): 1-6. |
JIANG Kejun, FENG Shengbo. Meeting《the Paris Agreement》temperature targets: Already on the way[J]. Climate Change Research, 2021, 17(1): 1-6. | |
3 | POTRČ S, ČUČEK L, MARTIN M, et al. Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111186. |
4 | 方书起,蒋璐瑶,李攀,等. 预处理生物质催化热解制取生物油的研究进展[J]. 现代化工, 2020, 40(4): 41-45. |
FANG Shuqi, JIANG Luyao, LI Pan, et al. Research progress on catalytic pyrolysis of pretreated biomass to bio-oil [J]. Modern Chemical Industry, 2020, 40(4): 41-45. | |
5 | ZADEH Z E, ABDULKHANI A, ABOELAZAYEM O, et al. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading[J]. Processes, 2020, 8(7): 799. |
6 | WANG G, DAI Y, YANG H, et al. A review of recent advances in biomass pyrolysis[J]. Energy & Fuels, 2020, 34(12): 15557-15578. |
7 | FAHMY TAMER Y A, FAHMY Y, MOBARAK F, et al. Biomass pyrolysis: Past, present, and future[J]. Environment, Development and Sustainability, 2020, 22(1): 17-32. |
8 | SEKAR M, MATHIMANI T, ALAGUMALAI A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil—Bottlenecks and scope[J]. Fuel, 2021, 283: 119190. |
9 | 时宇. 生物质热解催化剂失活的研究进展[J]. 工业催化, 2020, 28(9): 1-7. |
SHI Yu. Research progress on deactivation of catalyst for biomass pyrolysis [J]. Industrial Catalysis, 2020, 28(9): 1-7. | |
10 | AKHTAR A, KREPL V, IVANOVA T. A combined overview of combustion, pyrolysis, and gasification of biomass[J]. Energy & Fuels, 2018, 32(7): 7294-7318. |
11 | PANG Y J, WU D, CHEN Y S, et al. Pyrolysis of pine pellets catalyzed by blast furnace gas ash[J]. Chemical Engineering and Processing: Process Intensification, 2020, 156: 108094. |
12 | 方书起,王毓谦,李攀,等. 生物质热解利用中主要催化剂的研究进展[J]. 化工进展. 2021, 40(9): 5195-5203. |
FANG Shuqi, WANG Yuqian, LI Pan, et al. Research progress of main catalysts for biomass pyrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5195-5203. | |
13 | GROMOTKA Z, YABLONSKY G, OSTROVSKII N, et al. Three-factor kinetic equation of catalyst deactivation[J]. Entropy, 2021, 23(7): 818. |
14 | GRAMS J, RUPPERT A M. Catalyst stability Bottleneck of efficient catalytic pyrolysis[J]. Catalysts. 2021, 11(2): 265. |
15 | 刘壮,田宜水,马大朝,等. 生物质热解的典型影响因素及技术研究进展[J]. 可再生能源, 2021, 39(10): 1279-1286. |
LIU Zhuang, TIAN Yishui, MA Dazhao, et al. Research progress on typical influencing factors of biomass pyrolysis [J]. Renewable Energy, 2021, 39(10): 1279-1286. | |
16 | WANG K G, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
17 | HERACLEOUS E, PACHATOURIDOU E, HERNÁNDEZ-GIMÉNEZ A M, et al. Characterization of deactivated and regenerated zeolite ZSM-5-based catalyst extrudates used in catalytic pyrolysis of biomass[J]. Journal of Catalysis, 2019, 380: 108-122. |
18 | HOFF T C, HOLMES M J, PROANO-AVILES J, et al. Decoupling the role of external mass transfer and intracrystalline pore diffusion on the selectivity of HZSM-5 for the catalytic fast pyrolysis of biomass[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8766-8776. |
19 | LIU R H, SARKER M, RAHMAN M M, et al. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production—A review[J]. Progress in Energy and Combustion Science, 2020, 80: 100852. |
20 | FEI F, HUI C, LEI Z, et al. Carbon deposition on nickel-based catalyst during bio-syngas methanation in a fluidized bed reactor[J]. Earth and Environmental Science, 2018, 199(3): 032040. |
21 | ILIOPOULOU E F, TRIANTAFYLLIDIS K S, LAPPAS A A. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8(1): 322.1-322.29. |
22 | DALIGAUX V, RICHARD R, MANERO M. Deactivation and regeneration of zeolite catalysts used in pyrolysis of plastic wastes A process and analytical review[J]. Catalysts, 2021, 11(7): 770. |
23 | CHEN W, CHENG C, LEE K, et al. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation[J]. Chemosphere, 2021, 271: 129510. |
24 | OCHOA A, BILBAO J, GAYUBO A G, et al. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109600. |
25 | MULLEN C A, DORADO C, BOATENG A A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 195-203. |
26 | LU Q, YUAN S, WANG X, et al. Coking behavior and syngas composition of the char supported Fe catalyst of biomass pyrolysis volatiles reforming[J]. Fuel, 2021, 298: 120830. |
27 | KARNJANAKOM S, SURIYA-UMPORN T, BAYU A, et al. High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil[J]. Energy Conversion and Management, 2017, 142: 272-285. |
28 | SHAO S, ZHANG H, XIAO R, et al. Evolution of coke in the catalytic conversion of biomass-derivates by combined in-situ DRIFTS and ex-situ approach: Effect of functional structure[J]. Fuel Processing Technology, 2018, 178: 88-97. |
29 | FAN Y, CAI Y, LI X, et al. Coking characteristics and deactivation mechanism of the HZSM-5 zeolite employed in the upgrading of biomass-derived vapors[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 139-149. |
30 | MUKARAKATE C, ZHANG X, STANTON A R, et al. Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors[J]. Green Chem, 2014, 16(3): 1444-1461. |
31 | SANTAMARIA L, ARREGI A, LOPEZ G, et al. Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming[J]. Fuel, 2020, 262: 116593. |
32 | YU L, SONG M, WILLIAMS P T, et al. Optimized reforming of biomass derived gas based on thermodynamic and kinetics analysis with activated carbon fibers supported Ni-Al2O3 [J]. Bioenergy Research, 2020, 13(2): 581-590. |
33 | ZHAO J, WANG Z H, SHEN D K, et al. Coked Ni/Al2O3 from the catalytic reforming of volatiles from co-pyrolysis of lignin and polyethylene: Preparation, identification and application as a potential adsorbent[J]. Catalysis Science & Technology, 2021, 11(12): 4162-4171. |
34 | LIANG W, YAN H, CHEN C, et al. Revealing the effect of nickel particle size on carbon formation type in the methane decomposition reaction[J]. Catalysis, 2020, 10(8): 890. |
35 | RYCZKOWSKI R, GOSCIANSKA J, PANEK R, et al. Sustainable nickel catalyst for the conversion of lignocellulosic biomass to H-2-rich gas[J]. International Journal of Hydrogen Energy, 2021, 46(18): 10708-10722. |
36 | ZHU Y F, SONG W Q, YAO R J, et al. In-situ catalytic hydropyrolysis of lignin for the production of aromatic rich bio-oil[J]. Journal of the Energy Institute, 2022, 101: 187-193. |
37 | MUHAMMAD I, MANOS G. Improving the conversion of biomass in catalytic pyrolysis via intensification of biomass catalyst contact by Co-pressing[J]. Catalysts, 2021, 11(7): 805. |
38 | ZHENG Y W, TAO L, HUANG Y B, et al. Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 355-366. |
39 | 牛永红, 吴会军, 王忠胜, 等. 白云石催化成型松木的热解动力学研究[J]. 应用化工, 2018, 47(2): 254-257. |
NIU Yonghong, WU Huijun, WANG Zhongsheng, et al. Research on pyrolysis dynamic of pine sawdust catalyzed by dolomite[J]. Applied Chemical Industry, 2018, 47(2): 254-257, 267. | |
40 | SHI K Q, YAN J F, MENENDEZ J A, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in Chemistry, 2020, 8: 3. |
41 | ZHOU Y, CHEN Z, GONG H, et al. Study on the feasibility of using monolithic catalyst in the in-situ catalytic biomass pyrolysis for syngas production[J]. Waste Management, 2021, 120: 10-15. |
42 | ZHANG C T, ZHANG L J, LI Q Y, et al. Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass & Bioenergy, 2019, 124: 125-141. |
43 | GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1): 83-96. |
44 | LIU N W, XIE H, CAO H X, et al. Multi-technique characterization of recycled acetylene carbonylation catalyst CuY: Deactivation and coke analysis[J]. Fuel, 2019, 242: 617-623. |
45 | WANG X S, LI R J, YU C C, et al. Study on the deactivation process of dimethyl ether carbonylation reaction over Mordenite catalyst[J]. Fuel, 2021, 286: 119480. |
46 | ZHANG M, SONG Z, GUO M Q, et al. Effect of reduction atmosphere on structure and catalytic performance of PtIn/Mg(Al)O/ZnO for propane dehydrogenation[J]. Catalysts, 2020, 10(5): 485. |
47 | KARGE H G, WEITKAMP J. Characterization of coke on zeolites[J]. Springer Berlin Heidelberg, 2007, 5: 249-364. |
48 | 朱琦. 典型塑料的催化热解动力学研究及积碳特性分析[D]. 天津: 河北工业大学, 2020. |
ZHU Qi. Kinetics of catalytic pyrolysis of typical plastics and characterization of carbon deposition[D]. Tianjin: Hebei University of Technology, 2020. | |
49 | YE M, TAO Y, JIN F, et al. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports[J]. Catalysis Today, 2018, 307: 154-161. |
50 | BIZKARRA K, BERMUDEZ J M, ARCELUS-ARRILLAGA P, et al. Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming[J]. International Journal of Hydrogen Energy, 2018, 43(26): 11706-11718. |
51 | VALLE B, ARAMBURU B, OLAZAR M, et al. Steam reforming of raw bio-oil over Ni/La2O3-alpha Al2O3: Influence of temperature on product yields and catalyst deactivation[J]. Fuel, 2018, 216: 463-474. |
52 | GRAMS J, RYCZKOWSKI R, CHALUPKA K, et al. Impact of support (MCF, ZrO2, ZSM-5) on the efficiency of Ni catalyst in high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas[J]. Materials, 2019, 12(22): 3792. |
53 | 邵珊珊. 生物质催化热解中催化剂积炭与再生特性研究[D]. 南京: 东南大学, 2016. |
SHAO Shanshan. Carbon deposition and regeneration characteristics of catalyst for biomass catalytic pyrolysis[D]. Nanjing: Southeast University, 2016. | |
54 | 李文慧. ZSM-5分子筛催化剂上积碳物种的研究[D]. 大连: 大连理工大学, 2015. |
LI Wenhui. Study on carbon deposition over ZSM-5 zeolite catalysts[D]. Dalian: Dalian University of Technology, 2015. | |
55 | 李攀. 生物质催化热解制备高选择性芳香烃生物油的实验研究[D]. 武汉: 华中科技大学, 2016. |
LI Pan. Experimental study on the preparation of highly selective aromatic hydrocarbon bio-oil by catalytic pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
56 | VU X H, NGUYEN S, DANG T T, et al. Improved biofuel quality in catalytic cracking of triglyceride-rich biomass over nanocrystalline and hierarchical ZSM-5 catalysts[J]. Biomass Conversion and Biorefinery, 2021, 11(3): 755-766. |
57 | SUN H, FENG D, SUN S, et al. Effect of steam on coke deposition during the tar reforming from corn straw pyrolysis over biochar[J]. Fuel Processing Technology, 2021, 224: 107007. |
58 | XU M Z, MUKARAKATE C, IISA K, et al. Deactivation of multilayered MFI nanosheet zeolite during upgrading of biomass pyrolysis vapors[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5477-5484. |
59 | CHAIHAD N, ANNIWAER A, ZAHRA A A, et al. In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over hollow HZSM-5 with mesoporous shell[J]. Bioresource Technology, 2021, 341: 125874. |
60 | YU L, FARINMADE A, AJUMOBI O, et al. MCM-41/ZSM-5 composite particles for the catalytic fast pyrolysis of biomass[J]. Applied Catalysis A: General, 2020, 602: 117727. |
61 | NISHU, LIU R H, RAHMAN M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
62 | GOU J S, WANG Z P, LI C, et al. The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan[J]. Green Chemistry. 2017, 19(15): 3549-3557. |
63 | HOFF T C, GARDNER D W, THILAKARATNE R, et al. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2017, 529: 68-78. |
64 | KUMAR R, STREZOV V, WELDEKIDAN H, et al. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable & Sustainable Energy Reviews, 2020, 123:109763. |
65 | ZHANG H, SHAO S, XIAO R, et al. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy & Fuels, 2014, 28(1): 52-57. |
66 | HERNANDO H, FERMOSO J, OCHOA-HERNANDEZ C, et al. Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw[J]. Catalysis Today, 2018, 304: 30-38. |
67 | SHEN D, ZHAO J, XIAO R, et al. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 47-54. |
68 | WAN S L, WATERS C, STEVENS A, et al. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors[J]. ChemSusChem, 2015, 8(3): 552-559. |
69 | HU X, ZHANG Z M, GHOLIZADEH M, et al. Coke formation during thermal treatment of bio-oil[J]. Energy & Fuels, 2020, 34(7): 7863-7914. |
70 | CHEN C, VOLPE R, JIANG X. A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation[J]. Applied Energy, 2021, 302: 117557. |
71 | HAN K, YU W, XU L, et al. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst[J]. Fuel, 2021, 291: 120182. |
72 | IBÁÑEZ M, VALLE B, BILBAO J, et al. Effect of operating conditions on the coke nature and HZSM-5 catalysts deactivation in the transformation of crude bio-oil into hydrocarbons[J]. Catalysis Today, 2012, 195(1): 106-113. |
73 | ARREGI A, LOPEZ G, AMUTIO M, et al. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis[J]. Fuel, 2018, 216: 233-244. |
74 | GU Y, CHEN P, YAN H, et al. Coking mechanism of Mo/ZSM-5 catalyst in methane dehydroaromatization[J]. Applied Catalysis A: General, 2021, 613: 118019. |
75 | JIN Y, ZHANG L, LIU J, et al. Mesopore modification of beta zeolites by sequential alkali and acid treatments: Composition-dependent T-atoms removal behavior back donating to hierarchical structure and catalytic activity in benzene alkylation[J]. Microporous and Mesoporous Materials, 2017, 248: 7-17. |
76 | ZHANG H, SHAO S, LUO M, et al. The comparison of chemical liquid deposition and acid dealumination modified ZSM-5 for catalytic pyrolysis of pinewood using pyrolysis-gas chromatography/mass spectrometry[J]. Bioresource Technology, 2017, 244: 726-732. |
77 | GHAEDI M, IZADBAKHSH A. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1468-1486. |
78 | MA Q, FU T, LI H, et al. Insight into the selection of the post-treatment strategy for ZSM-5 zeolites for the improvement of catalytic stability in the conversion of methanol to hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2020, 59(24): 11125-11138. |
79 | HERNANDO H, HERNANDEZ-GIMENEZ A M, OCHOA-HERNANDEZ C, et al. Engineering the acidity and accessibility of the zeolite ZSM-5 for efficient bio-oil upgrading in catalytic pyrolysis of lignocellulose[J]. Green Chemistry, 2018, 20(15): 3499-3511. |
80 | SANTAMARIA L, ARTETXE M, LOPEZ G, et al. Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles[J]. Fuel Processing Technology, 2020, 198: 106223. |
81 | PERSSON H, DUMAN I, WANG S, et al. Catalytic pyrolysis over transition metal-modified zeolites: A comparative study between catalyst activity and deactivation[J]. Journal of Analytical and Applied Pyrolysis, 2019, 138: 54-61. |
82 | DU H, ZHONG Z, ZHANG B, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of bamboo with chemical liquid deposition modified HZSM-5 to enhance aromatics production[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104857. |
83 | WANG J, CAO J, ZHAO X, et al. Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride[J]. Bioresource Technology, 2019, 278: 116-123. |
84 | LI Z, ZHONG Z, ZHANG B, et al. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk[J]. Science of The Total Environment, 2020, 703: 134605. |
85 | WANG J, ZHONG Z, DING K, et al. Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5[J]. Energy, 2017, 133: 90-98. |
86 | 彭冲,刘鹏,胡永康,等. 低温等离子体构筑高效Ni基催化剂进展[J]. 化工进展, 2021, 40(7): 3553-3563. |
PENG Chong, LIU Peng, HU Yongkang, et al. Progress in the construction of high efficiency Ni based catalyst by low temperature plasma[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3553-3563. | |
87 | BALOPI B, MOYO M, GORIMBO J. Autothermal reforming of bio-ethanol: A short review of strategies used to synthesize coke-resistant nickel-based catalysts[J]. Catalysis Letters, 2022: 1-13. |
88 | MUTSENGERERE S, CHIHOBO C H, MUSADEMBA D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2019, 104: 328-336. |
89 | FOONG S Y, LIEW R K, YANG Y, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions[J]. Chemical Engineering Journal, 2020, 389: 124401. |
90 | ROBINSON B, CAIOLA A, BAI X W, et al. Catalytic direct conversion of ethane to value-added chemicals under microwave irradiation[J]. Catalysis Today, 2020, 356: 3-10. |
91 | LI J, JIAO L, LI Z, et al. Investigation of coke deposition during catalytic cracking of different biomass model tar: Effect of microwave[J]. Applied Catalysis A: General, 2021, 624: 118325. |
92 | ZHOU J, ZHAO J, ZHANG J, et al. Regeneration of catalysts deactivated by coke deposition: A review[J]. Chinese Journal of Catalysis, 2020, 41(7): 1048-1061. |
93 | LI X H, LV Z C, SHAO S S, et al. Regeneration of deactivated hierarchical La/Hi-ZSM-5 for catalytic pyrolysis of rape straw assisted by ozone from nonthermal plasma[J]. Energy & Fuels, 2020, 34(11): 14159-14168. |
94 | CORTES-TORRES R, NOLASCO-TERRON E Y, OLEA-MEJIA O, et al. Solvent mediated impurity removal process for a spent hydroprocessing catalyst and its use in alcohol oxidations[J]. Catalysis Today, 2018, 305: 126-132. |
95 | SUN C Y, LUO J Y, CAO M J, et al. A comparative study on different regeneration processes of Pt-Sn/gamma-Al2O3 catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2018, 27(1): 311-318. |
96 | YE L M, LU P, PENG Y, et al. Impact of NO x and NH3 addition on toluene oxidation over MnO x -CeO2 catalyst[J]. Journal of Hazardous Materials, 2021, 416: 125939. |
97 | HIKIMA S, KELLER M, MATSUO H, et al. Carbon-dioxide activation by methane with iron-doped barium zirconate in chemical looping cracking system[J]. Chemical Engineering Journal, 2021, 417: 128012. |
98 | ASTAFAN A, BATIOT-DUPEYRAT C, PINARD L. Mechanism and kinetic of coke oxidation by nonthermal plasma in fixed-bed dielectric barrier reactor[J]. Journal of Physical Chemistry C, 2019, 123(14): 9168-9175. |
[1] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[2] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[3] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[4] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[5] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[6] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[7] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[8] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[9] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[10] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[11] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[12] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[13] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[14] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[15] | FAN Baotian, YAN Zhenrong, SU Houde, LIU Cenfan, SONG Yujuan. Synergistic reduction of NO x and CO2 emissions by coupling pulverized coal with biomass gas [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5501-5508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |