Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 178-193.DOI: 10.16085/j.issn.1000-6613.2022-0530
• Energy processes and technology • Previous Articles Next Articles
MAO Tingting(), LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai()
Received:
2022-03-31
Revised:
2022-08-26
Online:
2023-02-20
Published:
2023-01-25
Contact:
HAN Kai
通讯作者:
韩凯
作者简介:
毛停停(1999—),女,硕士研究生,研究方向为太阳能界面蒸发。E-mail:2195890259@qq.com。
基金资助:
CLC Number:
MAO Tingting, LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai. Solar interfacial evaporation system and materials for water treatment and organic solvent purification[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 178-193.
毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0530
材料类型 | 材料名称 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
金属基等离子体 | Al NP/AAM | 4.0 | 约5.7 | 88.4 | [ |
Ag NPs | 4.0 | — | 约80 | [ | |
Au/h-Nanoturf | 1.0 | 1.33 | 约91 | [ | |
3D Au@Bi2MoO6 | 1.0 | 1.69 | 97.1 | [ | |
Ag/Au@GO | 10.0 | 12.96 | 92 | [ | |
AgNPs@C3N4/GO | 1.0 | 1.13 | 77 | [ | |
AuNPs@C-Silica | 1.0 | 约1.5 | 94.6 | [ | |
中空CuS泡沫 | 1.0 | 1.337 | 91.4 | [ | |
Cu9S5/PVDFM | 1.0 | 1.173 | 80.2 | [ | |
TiN NPs | 1.0 | — | >80 | [ | |
TiN、ZrN、HfN | 1.0 | 1.10、1.27、1.36 | 78、88、95 | [ | |
碳基 | 3D碳泡沫 | 1.0 | 10.9(风速6m·s-1) | — | [ |
CNTs/细菌纤维素 | 1.0 | 2.9 | 80 | [ | |
3D 碳点 | 0.5 | 1.58 | — | [ | |
PDMS/CNT/PVDF | 1.0 | 1.43 | [ | ||
CB/PMMA | 0.75 | 1.33 | 约87 | [ | |
CB/GO | 1.0 | 1.27 | 87.5 | [ | |
CNF@RGO-n | 1.0 | 1.47 | 83 | [ | |
rGO-MWCNT | 1.0 | 1.22 | 80.4 | [ | |
CNT | 1.0 | 1.59 | 95.7 | [ | |
CB(Janus结构) | 1.0 | 1.3 | 74 | [ | |
分层石墨烯泡沫 | 1.0 | — | 93.4 | [ | |
N-多孔石墨烯泡沫 | 1.0 | 1.54 | 82.2 | [ | |
CNT气凝胶 | 1.0 | 1.67 | 91 | [ | |
rGO/PVA | 1.0 | 2.5 | 约95 | [ | |
rGO泡沫 | 1.0 | 2.4 | 约100 | [ | |
石墨/纤维素气凝胶 | 1.0 | 1.61 | 90 | [ | |
碳化钼/碳基水凝胶 | 1.0 | 2.19 | 96.15 | [ | |
半导体 | Ti3+-TiO2 | 1.0 | 1.2 | 77.1 | [ |
Janus HN/NiO | 1.0 | 1.33 | 83.5 | [ | |
CuCr2O4/SiO2 | 1.0 | 1.32 | — | [ | |
Co3O4/Ni | 1.0 | 1.226 | >80 | [ | |
H1.68MoO3 | 1.0 | 1.37 | 84.4 | [ | |
MoO3-x | 1.0 | 1.51 | 95 | [ | |
1T-MoS2 | 1.0 | — | 83.3 | [ | |
Ni-G-WO3-x | 1.0 | 2.12 | 85 | [ | |
La0.7Sr0.3CoO3 | 1.0 | 1.67 | 92 | [ | |
生物质 | 碳化丝瓜络海绵 | 1.0 | 1.36 | 83.7 | [ |
碳化竹叶 | 1.0 | 1.75 | 91.9 | [ | |
PPy-Wood | 1.0 | 1.01 | 72.5 | [ | |
Wood@POF | 1.0 | — | 80 | [ | |
碳化双峰木材 | 6.0 | 6.4 | 79.5 | [ | |
碳化竹子 | 1.0 | 1.19 | 84 | [ | |
碳化甘蔗 | 1.0 | 1.57 | 87.4 | [ | |
碳化向日葵 | 1.0 | 1.51 | 约100 | [ | |
碳化咖啡渣 | 1.0 | 1.05 | 71.7 | [ | |
其他 | PPy/PVA | 1.0 | 3.2 | 94 | [ |
3D PPy折纸基 | 1.0 | 2.12 | 91.5 | [ | |
Ti3C2 | 1.0 | 1.44 | 85.5 | [ | |
Ti2C | 1.0 | 1.6 | 84.6 | [ | |
PDA@MXene | 1.0 | 1.276 | 85.2 | [ | |
3D MXene/Co/C | 1.0 | 1.393 | 93.4 | [ | |
BP/PU | 2.0 | 2.18 | 77.57 | [ |
材料类型 | 材料名称 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
金属基等离子体 | Al NP/AAM | 4.0 | 约5.7 | 88.4 | [ |
Ag NPs | 4.0 | — | 约80 | [ | |
Au/h-Nanoturf | 1.0 | 1.33 | 约91 | [ | |
3D Au@Bi2MoO6 | 1.0 | 1.69 | 97.1 | [ | |
Ag/Au@GO | 10.0 | 12.96 | 92 | [ | |
AgNPs@C3N4/GO | 1.0 | 1.13 | 77 | [ | |
AuNPs@C-Silica | 1.0 | 约1.5 | 94.6 | [ | |
中空CuS泡沫 | 1.0 | 1.337 | 91.4 | [ | |
Cu9S5/PVDFM | 1.0 | 1.173 | 80.2 | [ | |
TiN NPs | 1.0 | — | >80 | [ | |
TiN、ZrN、HfN | 1.0 | 1.10、1.27、1.36 | 78、88、95 | [ | |
碳基 | 3D碳泡沫 | 1.0 | 10.9(风速6m·s-1) | — | [ |
CNTs/细菌纤维素 | 1.0 | 2.9 | 80 | [ | |
3D 碳点 | 0.5 | 1.58 | — | [ | |
PDMS/CNT/PVDF | 1.0 | 1.43 | [ | ||
CB/PMMA | 0.75 | 1.33 | 约87 | [ | |
CB/GO | 1.0 | 1.27 | 87.5 | [ | |
CNF@RGO-n | 1.0 | 1.47 | 83 | [ | |
rGO-MWCNT | 1.0 | 1.22 | 80.4 | [ | |
CNT | 1.0 | 1.59 | 95.7 | [ | |
CB(Janus结构) | 1.0 | 1.3 | 74 | [ | |
分层石墨烯泡沫 | 1.0 | — | 93.4 | [ | |
N-多孔石墨烯泡沫 | 1.0 | 1.54 | 82.2 | [ | |
CNT气凝胶 | 1.0 | 1.67 | 91 | [ | |
rGO/PVA | 1.0 | 2.5 | 约95 | [ | |
rGO泡沫 | 1.0 | 2.4 | 约100 | [ | |
石墨/纤维素气凝胶 | 1.0 | 1.61 | 90 | [ | |
碳化钼/碳基水凝胶 | 1.0 | 2.19 | 96.15 | [ | |
半导体 | Ti3+-TiO2 | 1.0 | 1.2 | 77.1 | [ |
Janus HN/NiO | 1.0 | 1.33 | 83.5 | [ | |
CuCr2O4/SiO2 | 1.0 | 1.32 | — | [ | |
Co3O4/Ni | 1.0 | 1.226 | >80 | [ | |
H1.68MoO3 | 1.0 | 1.37 | 84.4 | [ | |
MoO3-x | 1.0 | 1.51 | 95 | [ | |
1T-MoS2 | 1.0 | — | 83.3 | [ | |
Ni-G-WO3-x | 1.0 | 2.12 | 85 | [ | |
La0.7Sr0.3CoO3 | 1.0 | 1.67 | 92 | [ | |
生物质 | 碳化丝瓜络海绵 | 1.0 | 1.36 | 83.7 | [ |
碳化竹叶 | 1.0 | 1.75 | 91.9 | [ | |
PPy-Wood | 1.0 | 1.01 | 72.5 | [ | |
Wood@POF | 1.0 | — | 80 | [ | |
碳化双峰木材 | 6.0 | 6.4 | 79.5 | [ | |
碳化竹子 | 1.0 | 1.19 | 84 | [ | |
碳化甘蔗 | 1.0 | 1.57 | 87.4 | [ | |
碳化向日葵 | 1.0 | 1.51 | 约100 | [ | |
碳化咖啡渣 | 1.0 | 1.05 | 71.7 | [ | |
其他 | PPy/PVA | 1.0 | 3.2 | 94 | [ |
3D PPy折纸基 | 1.0 | 2.12 | 91.5 | [ | |
Ti3C2 | 1.0 | 1.44 | 85.5 | [ | |
Ti2C | 1.0 | 1.6 | 84.6 | [ | |
PDA@MXene | 1.0 | 1.276 | 85.2 | [ | |
3D MXene/Co/C | 1.0 | 1.393 | 93.4 | [ | |
BP/PU | 2.0 | 2.18 | 77.57 | [ |
溶剂种类 | 沸点/℃ | 介电常数/F·m-1 | 密度/g·cm-3 |
---|---|---|---|
丙酮 | 56.5 | 20.7 | 0.788 |
甲醇 | 64.7 | 32.7 | 0.786 |
四氢呋喃 | 66.0 | 7.6 | 0.889 |
正己烷 | 69.0 | 1.9 | 0.659 |
乙醇 | 78.3 | 24.5 | 0.789 |
乙腈 | 81.6 | 37.5 | 0.787 |
异丙醇 | 82.5 | 19.9 | 0.786 |
正庚烷 | 98.0 | 1.9 | 0.683 |
水 | 100.0 | 78.5 | 1.000 |
甲苯 | 110.6 | 2.4 | 0.872 |
二甲苯 | 约140.0 | 2.4 | 0.897 |
N,N-二甲基甲酰胺 | 153.0 | 36.7 | 0.948 |
正己醇 | 约157.0 | 13.3 | 0.814 |
N,N-二甲基乙酰胺 | 166.1 | 37.8 | 0.937 |
二甲基亚砜 | 189.0 | 47.2 | 1.100 |
N-甲基吡咯烷酮 | 202.0 | 32.2 | 1.028 |
溶剂种类 | 沸点/℃ | 介电常数/F·m-1 | 密度/g·cm-3 |
---|---|---|---|
丙酮 | 56.5 | 20.7 | 0.788 |
甲醇 | 64.7 | 32.7 | 0.786 |
四氢呋喃 | 66.0 | 7.6 | 0.889 |
正己烷 | 69.0 | 1.9 | 0.659 |
乙醇 | 78.3 | 24.5 | 0.789 |
乙腈 | 81.6 | 37.5 | 0.787 |
异丙醇 | 82.5 | 19.9 | 0.786 |
正庚烷 | 98.0 | 1.9 | 0.683 |
水 | 100.0 | 78.5 | 1.000 |
甲苯 | 110.6 | 2.4 | 0.872 |
二甲苯 | 约140.0 | 2.4 | 0.897 |
N,N-二甲基甲酰胺 | 153.0 | 36.7 | 0.948 |
正己醇 | 约157.0 | 13.3 | 0.814 |
N,N-二甲基乙酰胺 | 166.1 | 37.8 | 0.937 |
二甲基亚砜 | 189.0 | 47.2 | 1.100 |
N-甲基吡咯烷酮 | 202.0 | 32.2 | 1.028 |
1 | HE G H, ZHAO Y, WANG J H, et al. The water-energy nexus: energy use for water supply in China[J]. International Journal of Water Resources Development, 2019, 35(4): 587-604. |
2 | ZHANG C, LIANG H Q, XU Z K, et al. Harnessing solar-driven photothermal effect toward the water-energy nexus[J]. Advanced Science, 2019, 6(18): 1900883. |
3 | ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518. |
4 | Ghasemi H, Ni G, Marconnet A M. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449. |
5 | LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017, 41: 269-284. |
6 | LIU G H, CHEN T, XU J L, et al. Solar evaporation for simultaneous steam and power generation[J]. Journal of Materials Chemistry A, 2020, 8(2): 513-531. |
7 | 徐凝. 界面光-蒸汽转化:仿生设计和综合利用[D]. 南京:南京大学, 2019. |
XU Ning. Interfacial photo-vapor conversion: bionic design and comprehensive utilization[D]. Nanjing: Nanjing University,2019. | |
8 | LU Y, WANG X, FAN D Q, et al. Biomass derived Janus solar evaporator for synergic water evaporation and purification[J]. Sustainable Materials and Technologies, 2020, 25: e00180. |
9 | LI J L, WANG X Y, LIN Z H, et al. Over 10kg/(m2·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 928-937. |
10 | LI X Q, LI J L, LU J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338. |
11 | GUAN Q F, HAN Z M, LING Z C, et al. Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water[J]. Nano Letters, 2020, 20(8): 5699-5704. |
12 | SINGH S C, ELKABBASH M, LI Z L, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 2020, 3(11): 938-946. |
13 | ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. |
14 | ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. |
15 | WU Y T, KONG R, MA C L, et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation[J]. Energy & Environmental Materials, 2022, 5(4): 1323-1331. |
16 | ZHANG P P, ZHAO F, SHI W, et al. Super water-extracting gels for solar-powered volatile organic compounds management in the hydrological cycle[J]. Advanced Materials, 2022, 34(12): 2110548. |
17 | CHEN B L, ZHANG X, XIA Y, et al. Harnessing synchronous photothermal and photocatalytic effects of cryptomelane-type MnO2 nanowires towards clean water production[J]. Journal of Materials Chemistry A, 2021, 9(4): 2414-2420. |
18 | GUO S H, LI X H, LI J, et al. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nature Communications, 2021, 12: 1343. |
19 | 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4): 580-596. |
GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry, 2019, 31(4): 580-596. | |
20 | LIU Y M, YU S T, FENG R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials, 2015, 27(17): 2768-2774. |
21 | LI X Q, XU W C, TANG M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-73958. |
22 | FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709. |
23 | LI X Q, LIN R X, NI G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment [J]. National Science Review, 2018, 5(1): 70-77. |
24 | WANG Y C, WANG C Z, SONG X J, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881. |
25 | ZHANG L J, BAI B, HU N, et al. Efficient 3D-interfacial solar steam generation enabled by photothermal nanodiamonds paint-coat with optimized heat management[J]. Applied Thermal Engineering, 2020, 171: 115059. |
26 | HONG S, SHI Y, LI R Y, et al. Nature-Inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28517-28524. |
27 | TU W J, WANG Z Z, WU Q Y, et al. Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination[J]. Journal of Materials Chemistry A, 2020, 8(20): 10260-12068. |
28 | XU D X, LI Z D, LI L S, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications[J]. Advanced Functional Materials, 2020, 30: 2000712. |
29 | LI W G, LI Z, BERTELSMANN K, et al. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis[J]. Advanced Materials, 2019, 31(29): 1900720. |
30 | GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
31 | ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401. |
32 | CHEN C L, ZHOU L, YU J Y, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 2018, 51: 451-456. |
33 | CHEN S, SUN Z Y, XIANG W L, et al. Plasmonic wooden flower for highly efficient solar vapor generation[J]. Nano Energy, 2020, 76: 104998. |
34 | KIM J U, KANG S J, LEE S, et al. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator[J]. Advanced Functional Materials, 2020, 30: 2003862. |
35 | TAHIR Z, KIM S, ULLAH F, et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2490-2496. |
36 | ZHENG Z M, LI H Y, ZHANG X D, et al. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: extraordinary desalination and electricity generation[J]. Nano Energy, 2020, 68: 104298. |
37 | WANG M M, ZHANG J, WANG P, et al. Bifunctional plasmonic colloidosome/graphene oxide-based floating membranes for recyclable high-efficiency solar-driven clean water generation J]. Nano Research, 2018, 11(7): 3854-3863. |
38 | ZHAO L P, DU C, ZHOU C, et al. Structurally ordered AgNPs@C3N4/GO membranes toward solar-driven freshwater generation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4362-4370. |
39 | LI C S, CAO S J, LUTZKI J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144: 3083-3090. |
40 | CUI R R, WEI J L, DU C, et al. Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification [J]. Journal of Materials Chemistry A, 2020, 8(26): 13311-13319. |
41 | LI X J, YAO Z P, WANG J K, et al. A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation[J]. ACS Applied Energy Materials, 2019, 2(7): 5154-5161. |
42 | SU L F, HU Y Q, MA Z Q, et al. Synthesis of hollow copper sulfide nanocubes with low emissivity for highly efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2020, 210: 110484. |
43 | TAO F J, ZHANG Y L, YIN K, et al. A plasmonic interfacial evaporator for high-efficiency solar vapor generation[J]. Sustainable Energy & Fuels, 2018, 2(12): 2762-2769. |
44 | SUN P, WANG W L, ZHANG W, et al. 3D interconnected gyroid Au-CuS materials for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34837-34847. |
45 | FARID M U, KHARRAZ J A, WANG P, et al. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane [J]. Journal of Cleaner Production, 2020, 271: 122684. |
46 | KAUR M, ISHII S, SHINDE S L, et al. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523-8528. |
47 | KAUR M, ISHII S, SHINDE S L, et al. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride[J]. Advanced Sustainable Systems, 2019, 3: 1800112. |
48 | TRAVER E, KARABALLI R A, MONFARED Y E, et al. TiN, ZrN, and HfN nanoparticles on aanoporous aluminum oxide membranes for solar-driven water evaporation and desalination[J]. ACS Applied Nano Materials, 2020, 3(3): 2787-2794. |
49 | MA T Y, YANG C Y, GUO W, et al. Flexible Pt3Ni-S-deposited teflon membrane with high surface mechanical properties for efficient solar-driven strong acidic/alkaline water evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27140-27149. |
50 | CAO S S, JIANG Q S, WU X H, et al. Advances in solar evaporator materials for freshwater generation[J]. Journal of Materials Chemistry A, 2019, 7(42): 24092-24123. |
51 | HUANG J W, HU Y J, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating[J]. Desalination, 2020, 489: 114529. |
52 | CHEN G L, ZHANG N, LI N, et al. A 3D hemispheric steam generator based on an organic-inorganic composite light absorber for efficient solar evaporation and desalination[J]. Advanced Materials Interfaces, 2019, 7: 1901715. |
53 | TIAN J, HUANG X H, WU W. Graphene-based stand-alone networks for efficient solar steam generation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1135-1141. |
54 | WEI W W, GUAN Q B, YOU C T, et al. Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2020, 8(28): 13927-13934. |
55 | WANG Y H, WANG C Z, SONG X J, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A, 2018, 6(3): 963-971. |
56 | LI Y J, GAO T T, YANG Z, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy, 2017, 41: 201-209. |
57 | LI L, ZANG L L, ZHANG S C, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197. |
58 | AWAD F S, KIRIARACHCHI H D, ABOUZEID K M, et al. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination[J]. ACS Applied Energy Materials, 2018, 1(3): 976-985. |
59 | WANG L, FENG Y J, WANG K Y, et al. Solar water sterilization enabled by photothermal nanomaterials[J]. Nano Energy, 2021, 87: 106158. |
60 | NOUREEN L, XIE Z J, GAO Y J, et al. Multifunctional Ag3PO4-rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6343-6350. |
61 | HIGGINS M W, SHAKEEL RAHMAAN A R, DEVARAPALLI R R, et al. Carbon fabric based solar steam generation for waste water treatment[J]. Solar Energy, 2018, 159: 800-810. |
62 | ZHANG Q, XIAO X F, WANG G, et al. Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability[J]. Journal of Materials Chemistry A, 2018, 6(35): 17212-17219. |
63 | ZHU B, KOU H, LIU Z X, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
64 | WANG Y L, LI G J, CHAN K C. Cost-effective and eco-friendly laser-processed cotton paper for high-performance solar evaporation[J]. Solar Energy Materials and Solar Cells, 2020, 218: 110693. |
65 | LI T T, FANG Q L, XI X F, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593. |
66 | KOU H, LIU Z X, ZHU B, et al. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J]. Desalination, 2019, 462: 29-38. |
67 | LIU G H, CHEN T, XU J L, et al. Salt-rejecting solar interfacial evaporation [J]. Cell Reports Physical Science, 2021, 2(1): 100310. |
68 | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8: 1702884. |
69 | XU N, LI J L, WANG. Y,et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science Advences, 2019, 5(7): eaaw7013. |
70 | XIA Y, LI Y, YUAN S, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. Journal of Materials Chemistry A, 2020, 8(32): 16212-16217. |
71 | REN H Y, TANG M, GUAN B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017, 29: 1702590. |
72 | ITO Y, HABATA Y, KURAMOCHI H, et al. Damage-free solar dewatering of micro-algal concentrates via multifunctional hierarchical porous graphene[J]. Advanced Sustainable Systems, 2019, 3: 1900045. |
73 | QIU P X, LIU F L, XU C M, et al. Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination[J]. Journal of Materials Chemistry A, 2019, 7(21): 13036-13042. |
74 | LI J L, YU F, JIANG Y, et al. Photothermal diatomite/carbon nanotube combined aerogel for high-efficiency solar steam generation and wastewater purification[J]. Solar RRL, 2022, 6(4): 2101011.1-2101011.9. |
75 | ZHOU X Y, ZHAO F, GUO Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science, 2018, 11(8): 1985-92. |
76 | LIANG H X, LIAO Q H, CHEN N, et al. thermal efficiency of solar steam generation approaching 100% through capillary water transport[J]. Angewandte Chemie International Edition, 2019, 58(52): 19041-19046. |
77 | GONG F, WANG W B, LI H, et al. Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification [J]. Applied Energy, 2020, 261: 114410. |
78 | YU F, CHEN Z H, GUO Z Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7139-7149. |
79 | YING P J, LI M, YU F L, et al. Band gap engineering in an efficient solar-driven interfacial evaporation system[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32880-32887. |
80 | QIN D D, ZHU Y J, YANG R L, et al. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination[J]. Nanoscale, 2020, 12(12): 6717-6728. |
81 | SHI Y, LI R Y, SHI L, et al. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation[J]. Advanced Sustainable Systems, 2018, 2: 1700145. |
82 | WANG P F, GU Y F, MIAO L, et al. Co3O4 nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun[J]. Sustainable Materials and Technologies, 2019, 20: e00106. |
83 | ZHU Q, YE K, ZHU W, et al. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2502-2509. |
84 | HUANG S L, LONG Y J, YI H, et al. Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption[J]. Applied Surface Science, 2019, 491: 328-334. |
85 | ZHANG L, MU L, ZHOU Q, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367. |
86 | LI Z K, ZHENG M, WEI N, et al. Broadband-absorbing WO3- x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation[J]. Solar Energy Materials and Solar Cells, 2020, 205, 110254. |
87 | LI Z K, XU R Q, WEI N, et al. 3D network structure and hydrophobic Ni-G-WO3- x solar-driven interfacial evaporator for highly efficient steam generation [J]. Solar Energy Materials and Solar Cells, 2020, 217: 110593. |
88 | WANG Y C, WANG C Z, LIANG W Y, et al. Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration [J]. Nano Energy, 2020, 70: 104538. |
89 | LU Y, DAI T Y, LU C H, et al. Fabrication of doped SmBaCo2O5+ δ double perovskites for enhanced solar-driven interfacial evaporation[J]. Ceramics International, 2019, 45(18): 24903-24908. |
90 | ZHU M W, LI Y J, CHEN G, et al. Tree-inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29: 1704107. |
91 | WANG Z, YAN Y T, SHEN X P, et al. A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement [J]. Journal of Materials Chemistry A, 2019, 7(36): 20706-207012. |
92 | XIA Z J, YANG H C, CHEN Z, et al. Porphyrin covalent organic framework (POF)-based interface engineering for solar steam generation[J]. Advanced Materials Interfaces, 2019, 6: 1900254. |
93 | HE S M, CHEN C J, KUANG Y D, et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination[J]. Energy & Environmental Science, 2019, 12(5): 1558-1567. |
94 | TANG J B, ZHENG T, SONG Z P, et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18504-18511. |
95 | SUN Z Z, LI W Z, SONG W L, et al. A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of Materials Chemistry A, 2020, 8(1): 349-357. |
96 | LI Z T, WANG C B, LEI T, et al. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity[J]. Advanced Sustainable Systems, 2019, 3: 1800144. |
97 | LIU J, LIU Q L, MA D L, et al. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation [J]. Journal of Materials Chemistry A, 2019, 7(15): 9034-9039. |
98 | SUN P, ZHANG W, ZADA I, et al. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 2171-2179. |
99 | HAN X, WANG W P, ZUO K C, et al. Bio-derived ultrathin membrane for solar driven water purification[J]. Nano Energy, 2019, 60: 567-575. |
100 | WANG C F, WU C L, KUO S W, et al. Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification[J]. Scientific Reports, 2020, 10(1): 12769. |
101 | LU Y, DAI T Y, FAN D Q, et al. Turning trash into treasure: pencil waste-derived materials for solar-powered water evaporation[J]. Energy Technology, 2020, 8: 2000567. |
102 | ZHA X J, ZHAO X, PU J H, et al. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36589-36597. |
103 | JU M M, YANG Y W, ZHAO J Q, et al. Macroporous 3D MXene architecture for solar-driven interfacial water evaporation[J]. Journal of Advanced Dielectrics, 2020, 9: 1950047. |
104 | MING X, GUO A, ZHANG Q, et al. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification[J]. Carbon, 2020, 167: 285-295. |
105 | ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455. |
106 | ZHAO X, ZHA X J, TANG L S, et al. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation[J]. Nano Research, 2019, 13(1): 255-264. |
107 | FAN X Q, YANG Y, SHI X L, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance [J]. Advanced Functional Materials, 2020, 2007110. |
108 | LI Z X, CAI W, WANG X, et al. Self-floating black phosphorous nanosheets as a carry-on solar vapor generator[J]. Journal of Colloid and Interface Science, 2021, 582: 496-505. |
109 | CAI W, MU X W, PAN Y, et al. Black phosphorous nanosheets: a novel solar vapor generator[J]. Solar RRL, 2020, 4: 1900537. |
110 | NIE L, CHUAH C Y, BAE T H, et al. Graphene-based advanced membrane applications in organic solvent nanofiltration[J]. Advanced Functional Materials, 2020, 31: 2006949. |
111 | FANG Q, LI G L, LIN H B, et al. Solar-driven organic solvent purification enabled by the robust cubic Prussian blue[J]. Journal of Materials Chemistry A, 2019, 7(15): 8960-8966. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[3] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[4] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
[5] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[6] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[7] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[8] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
[9] | DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114. |
[10] | ZHANG Qun, CHEN Chongjun, XIE Jiawei, ZOU Xinyi. Research progress on the microbial desalination cell for high-salt wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 974-980. |
[11] | SUN Huilian, SUN Lingjie, ZHAO Yang, SUN Xiang, ZHANG Lunxiang. Research on the application of hydrate-based method in the treatment of actual complex wastewater and high salt wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6672-6679. |
[12] | CAO Wensheng, XU Jianzhuang, GUO Zhaochun, LIN Wensheng, BLUTH Christoph. Dynamic simulation of cold energy desalination using ice-sheet machine [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 61-68. |
[13] | XIE Songchen, WEN Jianping, PANG Zhiguang, HOU Chunguang, LI Zhixia, JIN Dunshang, PENG Yuelian. Research progress of membrane fouling and wetting in membrane distillation process for desalination [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3942-3956. |
[14] | LIU Lixin, ZHAO Xiaofei, LAI Jiafeng, QIU Guanping, LI Qianfeng, CHEN Junyu. Progress of research on membrane wetting in membrane distillation desalination [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3072-3082. |
[15] | GUO Qijing, ZHAN Weiquan, WANG Qingmiao, JIA Feifei, SONG Shaoxian. Research progress of molybdenum disulfide as a material for seawater desalination [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1456-1468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |