Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 194-203.DOI: 10.16085/j.issn.1000-6613.2022-0507
• Industrial catalysis • Previous Articles Next Articles
XUE Machen1(), YANG Bolun1(), XIA Chungu2, ZHU Gangli2,3()
Received:
2022-03-28
Revised:
2022-07-11
Online:
2023-02-20
Published:
2023-01-25
Contact:
YANG Bolun, ZHU Gangli
薛马晨1(), 杨伯伦1(), 夏春谷2, 朱刚利2,3()
通讯作者:
杨伯伦,朱刚利
作者简介:
薛马晨(1993—),男,博士研究生,研究方向为工业催化。E-mail:xuemachen@stu.xjtu.edu.cn。
基金资助:
CLC Number:
XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203.
薛马晨, 杨伯伦, 夏春谷, 朱刚利. 乙醇缩合制高碳醇(C6+醇)多相催化剂研究进展[J]. 化工进展, 2023, 42(1): 194-203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0507
序号 | 催化剂 | 反应条件 | 转化率/% | 选择性/% | 参考文献 | |
---|---|---|---|---|---|---|
丁醇 | C6+醇 | |||||
1 | CaC2 | 10%(摩尔分数)催化剂,6h,0.1MPa Ar,315℃ | 50 | 26.8 | 52.2 | [ |
2 | Ca(OCH2CH3) | 10%(摩尔分数)催化剂,8h,0.1MPa Ar,315℃ | 28 | 34 | 47 | [ |
3 | FeNiO x | 1.25%(质量分数)催化剂,0.8% LiOH,24h,0.5MPa N2,230℃ | 37 | 71 | 20 | [ |
4 | Ni-Sn | 3.3%(质量分数)催化剂,NaOH,0.1MPa H2,24h,250℃ | 46.6 | 23 | 53.6 | [ |
序号 | 催化剂 | 反应条件 | 转化率/% | 选择性/% | 参考文献 | |
---|---|---|---|---|---|---|
丁醇 | C6+醇 | |||||
1 | CaC2 | 10%(摩尔分数)催化剂,6h,0.1MPa Ar,315℃ | 50 | 26.8 | 52.2 | [ |
2 | Ca(OCH2CH3) | 10%(摩尔分数)催化剂,8h,0.1MPa Ar,315℃ | 28 | 34 | 47 | [ |
3 | FeNiO x | 1.25%(质量分数)催化剂,0.8% LiOH,24h,0.5MPa N2,230℃ | 37 | 71 | 20 | [ |
4 | Ni-Sn | 3.3%(质量分数)催化剂,NaOH,0.1MPa H2,24h,250℃ | 46.6 | 23 | 53.6 | [ |
序号 | 催化剂 | 反应条件 | 转化率/% | 选择性/% | 参考文献 | |
---|---|---|---|---|---|---|
丁醇 | C6+醇 | |||||
1 | Ag/MgAl-LDO | LHSV=6h-1,250°C,2MPa N2 | 53.7 | 57.3 | 13.8 | [ |
2 | 3Cu1Ce/AC | LHSV=4h-1,250°C,2MPa N2 | 46.2 | 41.3 | 19.7 | [ |
3 | 3Cu1Ce/AC | 4%(质量分数)催化剂,250℃,48h,0.1MPa N2 | 39.1 | 55.2 | 20.3 | [ |
4 | Pd@UiO-66 | LHSV=4h-1,250°C,2MPa N2 | 49.8 | 48.6 | ~20 | [ |
序号 | 催化剂 | 反应条件 | 转化率/% | 选择性/% | 参考文献 | |
---|---|---|---|---|---|---|
丁醇 | C6+醇 | |||||
1 | Ag/MgAl-LDO | LHSV=6h-1,250°C,2MPa N2 | 53.7 | 57.3 | 13.8 | [ |
2 | 3Cu1Ce/AC | LHSV=4h-1,250°C,2MPa N2 | 46.2 | 41.3 | 19.7 | [ |
3 | 3Cu1Ce/AC | 4%(质量分数)催化剂,250℃,48h,0.1MPa N2 | 39.1 | 55.2 | 20.3 | [ |
4 | Pd@UiO-66 | LHSV=4h-1,250°C,2MPa N2 | 49.8 | 48.6 | ~20 | [ |
1 | XU Di, YANG Hengquan, HONG Xinlin, et al. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2021, 11(15): 8978-8984. |
2 | LIANG Ning, ZHANG Xiaolong, AN Hualiang, et al. Direct synthesis of 2-ethylhexanol via n-butanal aldol condensation-hydrogenation reaction integration over a Ni/Ce-Al2O3 bifunctional catalyst[J]. Green Chemistry, 2015, 17(5): 2959-2972. |
3 | ATABANI A E, Al KULTHOOM S. Spectral, thermoanalytical characterizations, properties, engine and emission performance of complementary biodiesel-diesel-pentanol/octanol blends[J]. Fuel, 2020, 282: 118849. |
4 | GUERBET Marcel. Guerbet reaction[J]. Comptes Rend, 1899, 128: 511. |
5 | WU Xianyuan, FANG Geqian, TONG Yuqin, et al. Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development[J]. ChemSusChem, 2018, 11(1): 71-85. |
6 | WANG S C, CENDEJAS M C, HERMANS I. Insights into ethanol coupling over hydroxyapatite using modulation excitation operando infrared spectroscopy[J]. ChemCatChem, 2020, 12(16): 4167-4175. |
7 | CARVALHO D L, DE AVILLEZ R R, RODRIGUES M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Applied Catalysis A: General, 2012, 415/416: 96-100. |
8 | NDOU A S, PLINT N, COVILLE N J. Dimerisation of ethanol to butanol over solid-base catalysts[J]. Applied Catalysis A: General, 2003, 251(2): 337-345. |
9 | TSUCHIDA, SAKUMA S, TAKEGUCHI T, et al. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite[J]. Industrial & Engineering Chemistry Research, 2006, 45(25): 8634-8642. |
10 | TSUCHIDA T, KUBO J, YOSHIOKA T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2): 183-189. |
11 | OGO S, ONDA A, IWASA Y, et al. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. Journal of Catalysis, 2012, 296: 24-30. |
12 | MOTEKI T, FLAHERTY D W. Mechanistic insight to C—C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites[J]. ACS Catalysis, 2016, 6(7): 4170-4183. |
13 | HANSPAL S, YOUNG Z D, SHOU H, et al. Multiproduct steady-state isotopic transient kinetic analysis of the ethanol coupling reaction over hydroxyapatite and magnesia[J]. ACS Catalysis, 2015, 5(3): 1737-1746. |
14 | HO C R, SHYLESH S, BELL A T. Mechanism and kinetics of ethanol coupling to butanol over hydroxyapatite[J]. ACS Catalysis, 2016, 6(2): 939-948. |
15 | WANG Qingnan, ZHOU Baichuan, WENG Xuefei, et al. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6-12 alcohol yield[J]. Chemical Communications (Cambridge, England), 2019, 55(70): 10420-10423. |
16 | BRASIL H, BITTENCOURT A F, YOKOO K C, et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio[J]. Journal of Catalysis, 2021, 404: 802-813. |
17 | RAMASAMY K K, GRAY M, JOB H, et al. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds[J]. Catalysis Today, 2016, 269: 82-87. |
18 | BENITO P, VACCARI A, ANTONETTI C, et al. Tunable copper-hydrotalcite derived mixed oxides for sustainable ethanol condensation to n-butanol in liquid phase[J]. Journal of Cleaner Production, 2019, 209: 1614-1623. |
19 | SUMMA P, SAMOJEDEN B, MOTAK M, et al. Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation[J]. Catalysis Today, 2022, 384/385/386: 133-145. |
20 | JIANG Dahao, WU Xianyuan, MAO Jun, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications (Cambridge, England), 2016, 52(95): 13749-13752. |
21 | EAGAN N M, LANCI M P, HUBER G W. Kinetic modeling of alcohol oligomerization over calcium hydroxyapatite[J]. ACS Catalysis, 2020, 10(5): 2978-2989. |
22 | PERRONE O M, SIQUEIRA M R, METZKER G, et al. Copper and lanthanum mixed oxides as catalysts for ethanol Guerbet coupling: The role of La3+ on the production of long-chain alcohols[J]. Environmental Progress & Sustainable Energy, 2020, 40(2): e13541. |
23 | WANG Dong, LIU Zhenyu, LIU Qingya. Efficient conversion of ethanol to 1-butanol and C5-C9 alcohols over calcium carbide[J]. RSC Advances, 2019, 9(33): 18941-18948. |
24 | WANG Dong, LIU Zhenyu, LIU Qingya. Synthesis of 1-butanol from ethanol over calcium ethoxide: Experimental and density functional theory simulation[J]. The Journal of Physical Chemistry C, 2019, 123(37): 22932-22940. |
25 | PANG Jifeng, ZHENG Mingyuan, WANG Zhinuo, et al. Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO x and LiOH[J]. Chinese Journal of Catalysis, 2020, 41(4): 672-678. |
26 | ZHANG Qian, LIU Wenping, CHEN Bo, et al. Upgrading of aqueous ethanol to fuel grade higher alcohols over dandelion-like Ni-Sn catalyst[J]. Energy Conversion and Management, 2020, 216: 112914. |
27 | ZAFFRAN J, MICHEL C, DELBECQ F, et al. Trade-off between accuracy and universality in linear energy relations for alcohol dehydrogenation on transition metals[J]. The Journal of Physical Chemistry C, 2015, 119(23): 12988-12998. |
28 | JORDISON T L, LIRA C T, MILLER D J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
29 | PANG Jifeng, ZHENG Mingyuan, HE Lei, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
30 | EARLEY J H, BOURNE R A, WATSON M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and>C4 products over Cu/CeO2 catalysts in supercritical CO2 [J]. Green Chemistry, 2015, 17 (5): 3018-3025. |
31 | ZHANG Jian, SHI Kai, AN Zhe, et al. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3342-3350. |
32 | JIANG Dahao, FANG Geqian, TONG Yuqin, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n‑butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
33 | WANG Zhinuo, PANG Jifeng, SONG Lei, et al. Conversion of ethanol to n-butanol over NiCeO2 based catalysts: Effects of metal dispersion and NiCe interactions[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22057-22067. |
34 | XUE Machen, YANG Bolun, XIA Chungu, et al. Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3466-3476. |
35 | DONG Chao, YU Qun, YE Runping, et al. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations[J]. Angewandte Chemie International Edition, 2020, 59(42): 18374-18379. |
36 | ZHANG Jian, SHI Kai, ZHU Yanru, et al. Interfacial sites in Ag supported layered double oxide for dehydrogenation coupling of ethanol to n-butanol[J]. ChemistryOpen, 2021, 10(11):1095-1103. |
37 | NIKOLAEV S A, CHISTYAKOV A V, ZHAROVA P A, et al. Synergistic effect of gold and copper in the catalytic conversion of ethanol to linear α-alcohols[J]. Petroleum Chemistry, 2016, 56(8): 730-737. |
38 | NIKOLAEV S A, TSODIKOV M V, CHISTYAKOV A V, et al. PdCu nanoalloy supported on alumina: A stable and selective catalyst for the conversion of bioethanol to linear α-alcohols[J]. Catalysis Today, 2021, 379: 50-61. |
39 | NEZAM I, ZAK J, MILLER D J. Condensed-phase ethanol conversion to higher alcohols over bimetallic catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 13906-13915. |
40 | FEI Xing, XU Quanzhou, XUE Lijing, et al. Aqueous phase catalytic conversion of ethanol to higher alcohols over NiSn bimetallic catalysts encapsulated in nitrogen-doped biorefinery lignin-based carbon[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 17959-17969. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |