Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 415-423.DOI: 10.16085/j.issn.1000-6613.2022-0780
• Materials science and technology • Previous Articles Next Articles
ZHANG Xinhai(
), ZHAO Sichen(
), ZHU Hui, WANG Kai, ZHANG Shoushi
Received:2022-04-28
Revised:2022-05-31
Online:2022-11-10
Published:2022-10-20
Contact:
ZHAO Sichen
通讯作者:
赵思琛
作者简介:张辛亥(1971—),男,博士,教授,研究方向为安全工程、煤矿防灭火技术。E-mail:Zhangxinh71@126.com。
CLC Number:
ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423.
张辛亥, 赵思琛, 朱辉, 王凯, 张首石. 活性碳纤维负载型脱硫剂在矿井气体环境条件下的应用[J]. 化工进展, 2022, 41(S1): 415-423.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0780
| 原料 | 供方公司名 | 型号 |
|---|---|---|
| 活性碳纤维粉 | 江苏科净 | KJF1500型 |
| 去离子水 | 江苏沐阳 | — |
| 氢氧化钠 | 天津致远 | 分析纯(AR) |
| 硝酸铜 | 北辰方正 | 分析纯(AR) |
| 气体采样袋 | 上海顺潮 | 铝箔复合膜气体采样袋 |
| 原料 | 供方公司名 | 型号 |
|---|---|---|
| 活性碳纤维粉 | 江苏科净 | KJF1500型 |
| 去离子水 | 江苏沐阳 | — |
| 氢氧化钠 | 天津致远 | 分析纯(AR) |
| 硝酸铜 | 北辰方正 | 分析纯(AR) |
| 气体采样袋 | 上海顺潮 | 铝箔复合膜气体采样袋 |
煤温 /℃ | O2 /% | N2 /% | CO /μL·L-1 | CO2 /μL·L-1 | CH4 /μL·L-1 | C2H6 /μL·L-1 | C2H4 /μL·L-1 |
|---|---|---|---|---|---|---|---|
| 40.00 | 20.22 | 73.36 | 179 | 2562 | 1.06 | 2.41 | 0 |
| 80.00 | 17.45 | 75.6 | 1349 | 17854 | 4.75 | 3.028 | 0.641 |
| 120.00 | 13.14 | 78.23 | 3376 | 22764 | 10.88 | 6.87 | 1.74 |
| 160.00 | 12.91 | 79.12 | 13174 | 26909 | 20.21 | 15.035 | 6.78 |
煤温 /℃ | O2 /% | N2 /% | CO /μL·L-1 | CO2 /μL·L-1 | CH4 /μL·L-1 | C2H6 /μL·L-1 | C2H4 /μL·L-1 |
|---|---|---|---|---|---|---|---|
| 40.00 | 20.22 | 73.36 | 179 | 2562 | 1.06 | 2.41 | 0 |
| 80.00 | 17.45 | 75.6 | 1349 | 17854 | 4.75 | 3.028 | 0.641 |
| 120.00 | 13.14 | 78.23 | 3376 | 22764 | 10.88 | 6.87 | 1.74 |
| 160.00 | 12.91 | 79.12 | 13174 | 26909 | 20.21 | 15.035 | 6.78 |
| 脱硫剂名称 | H2S出现时间/min | SO2出现时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| AFC | 5 | 5 | 10 | 0.0033 |
| AFC-NaOH-4% | 50 | 40 | 80 | 0.0278 |
| AFC-NaOH-7% | 105 | 85 | 165 | 0.0572 |
| AFC-NaOH-10% | 90 | 50 | 155 | 0.0505 |
| AFC-NaOH-20% | 65 | 50 | 100 | 0.0337 |
| AFC-NaOH-40% | 5 | 5 | 5 | 0.0017 |
| 脱硫剂名称 | H2S出现时间/min | SO2出现时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| AFC | 5 | 5 | 10 | 0.0033 |
| AFC-NaOH-4% | 50 | 40 | 80 | 0.0278 |
| AFC-NaOH-7% | 105 | 85 | 165 | 0.0572 |
| AFC-NaOH-10% | 90 | 50 | 155 | 0.0505 |
| AFC-NaOH-20% | 65 | 50 | 100 | 0.0337 |
| AFC-NaOH-40% | 5 | 5 | 5 | 0.0017 |
| 脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| AFC | 5 | 5 | 10 | 0.0033 |
| AFC-CuO-1% | 60 | 45 | 110 | 0.0357 |
| AFC-CuO-3% | 105 | 30 | 165 | 0.0476 |
| AFC-CuO-5% | 115 | 5 | 165 | 0.0451 |
| AFC-CuO-10% | 190 | 5 | 275 | 0.0779 |
| AFC-CuO-20% | 30 | 10 | 55 | 0.0180 |
| AFC-CuO-40% | 130 | 10 | 200 | 0.0605 |
| 脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| AFC | 5 | 5 | 10 | 0.0033 |
| AFC-CuO-1% | 60 | 45 | 110 | 0.0357 |
| AFC-CuO-3% | 105 | 30 | 165 | 0.0476 |
| AFC-CuO-5% | 115 | 5 | 165 | 0.0451 |
| AFC-CuO-10% | 190 | 5 | 275 | 0.0779 |
| AFC-CuO-20% | 30 | 10 | 55 | 0.0180 |
| AFC-CuO-40% | 130 | 10 | 200 | 0.0605 |
| 脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| 无矿煤气 | ||||
| AFC-NaOH-7% | 105 | 85 | 165 | 0.0571 |
| AFC-CuO-10% | 190 | 5 | 275 | 0.0779 |
| 煤40℃生成气体 | ||||
| AFC-NaOH-7% | 75 | 35 | 125 | 0.0420 |
| AFC-CuO-10% | 145 | 5 | 225 | 0.0619 |
| 煤80℃生成气体 | ||||
| AFC-NaOH-7% | 55 | 25 | 95 | 0.0328 |
| AFC-CuO-10% | 90 | 20 | 150 | 0.0484 |
| 煤120℃生成气体 | ||||
| AFC-NaOH-7% | 10 | 25 | 35 | 0.0122 |
| AFC-CuO-10% | 35 | 50 | 85 | 0.0296 |
| 煤160℃生成气体 | ||||
| AFC-NaOH-7% | 15 | 30 | 40 | 0.0141 |
| AFC-CuO-10% | 30 | 60 | 55 | 0.0212 |
| 脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
|---|---|---|---|---|
| 无矿煤气 | ||||
| AFC-NaOH-7% | 105 | 85 | 165 | 0.0571 |
| AFC-CuO-10% | 190 | 5 | 275 | 0.0779 |
| 煤40℃生成气体 | ||||
| AFC-NaOH-7% | 75 | 35 | 125 | 0.0420 |
| AFC-CuO-10% | 145 | 5 | 225 | 0.0619 |
| 煤80℃生成气体 | ||||
| AFC-NaOH-7% | 55 | 25 | 95 | 0.0328 |
| AFC-CuO-10% | 90 | 20 | 150 | 0.0484 |
| 煤120℃生成气体 | ||||
| AFC-NaOH-7% | 10 | 25 | 35 | 0.0122 |
| AFC-CuO-10% | 35 | 50 | 85 | 0.0296 |
| 煤160℃生成气体 | ||||
| AFC-NaOH-7% | 15 | 30 | 40 | 0.0141 |
| AFC-CuO-10% | 30 | 60 | 55 | 0.0212 |
| 1 | 中华人民共和国国家卫生健康委员会. 中华人民共和国国家职业卫生标准: [S]. 北京: 中国标准出版社, 2019. |
| National Health Commission of the People's Republic of China. National occupational health standards of the People’s Republic of China: [S]. Beijing: Standards Press of China, 2019. | |
| 2 | 黄新, 朱道平. 硫化氢脱除方法述评[J]. 化学工业与工程技术, 2004, 25(5): 47-49, 62. |
| HUANG Xin, ZHU Daoping. Review on removal technology of H2S[J]. Journal of Chemical Industry & Engineering, 2004, 25(5): 47-49, 62. | |
| 3 | DALRYMPLE D A, TROFE T W, EVANS J M. An overview of liquid redox sulfur recovery [J]. Chemical Engineering Progress, 1989, 85(3): 5966572. |
| 4 | LIU Xinpeng, WANG Rui. H2S removal by peroxo heteropoly compound/ionic liquid solution[J]. Fuel Processing Technology, 2017, 160: 78-85. |
| 5 | 梁锋, 徐丙根, 施小红, 等. 湿式氧化法脱硫的技术进展[J]. 现代化工, 2003, 23(5): 21-24. |
| LIANG Feng, XU Binggen, SHI Xiaohong, et al. Advances in desulfurization with wet oxidation process[J]. Modern Chemical Industry, 2003, 23(5): 21-24. | |
| 6 | 李石雷, 张冬冬, 宁平, 等. 液相催化氧化法脱除硫化氢的研究进展[J]. 广州化学, 2017, 42(5): 57-64. |
| LI Shilei, ZHANG Dongdong, NING Ping, et al. Progress of liquid phase catalytic oxidation removing hydrogen sulfide[J]. Guangzhou Chemistry, 2017, 42(5): 57-64. | |
| 7 | 刘岱. 氧化铜基脱硫剂低温脱硫与再生性能研究[D]. 大连: 大连理工大学, 2017. |
| LIU Dai. Low temperature desulfurization and regeneration performance of CuO-based adsorbents[D]. Dalian: Dalian University of Technology, 2017. | |
| 8 | XUE Mei, CHITRAKAR Ramesh, SAKANE Kohji, et al. Screening of adsorbents for removal of H2S at room temperature[J]. Green Chemistry, 2003, 5(5): 529-534. |
| 9 | JIANG Dahao, SU Lianghu, MA Lei, et al. Cu-Zn-Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature[J]. Applied Surface Science, 2010, 256(10): 3216-3223. |
| 10 | DHAGE Priyanka, SAMOKHVALOV A, REPALA Divya, et al. Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams[J]. Industrial & Engineering Chemistry Research, 2010, 49: 8388-8396. |
| 11 | 颜杰, 李红, 刘科财, 等. 干法脱除硫化氢技术研究进展[J]. 四川化工, 2011, 14(5): 27-31. |
| YAN Jie, LI Hong, LIU Kecai, et al. Research progress of removing H2S by dry method[J]. Sichuan Chemical Industry, 2011, 14(5): 27-31. | |
| 12 | 常化振, 赵朝成. 浸渍铜盐改性活性炭吸附/催化氧化低浓度H2S[J]. 石油化工, 2008, 37(11): 1195-1200. |
| CHANG Huazhen, ZHAO Chaocheng. Adsorption & catalytic oxidation of low concentration H2S on activated carbon modified by copper salts[J]. Petrochemical Technology, 2008, 37(11): 1195-1200. | |
| 13 | 陈勇, 赖小林. 氧化铁/活性炭负载型硫化氢脱除剂制备及性能评价[J]. 工业催化, 2014, 22(9): 680-682. |
| CHEN Yong, LAI Xiaolin. Preparation and performance evaluation of iron oxide/activated carbon supported hydrogen sulfide scavenger[J]. Industrial Catalysis, 2014, 22(9): 680-682. | |
| 14 | 刘孝坤, 刘永军. 活性炭的改性条件及其对硫化氢吸附性能的影响[J]. 化工进展, 2012, 31(3): 676-680. |
| LIU Xiaokun, LIU Yongjun. Activated carbon modification condition and its influence on the performance of the adsorption of hydrogen sulfide[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 676-680. | |
| 15 | 罗佳妮. 活性炭纳米纤维的功能改性及性能研究[D]. 武汉: 武汉纺织大学, 2020. |
| LUO Jiani. Study on functional modification and properties of activated carbon nanofibers[D]. Wuhan: Wuhan Textile University, 2020. | |
| 16 | 费金彪. 煤自燃阶段判定理论与分级预警方法研究[D]. 西安: 西安科技大学, 2019. |
| FEI Jinbiao. Study on stage determination theory and classified early warning method for spontaneous combustion of coal[D]. Xi'an: Xi'an University of Science and Technology, 2019. | |
| 17 | 鲍勇强. 活性炭纤维负载掺铜BiVO4光催化剂降解车内甲醛的研究[D]. 重庆: 重庆大学, 2018. |
| BAO Yongqiang. Study on the degradation of formaldehyde in car by activated carbon fiber loaded with copper-doped BiVO4 composite photocatalyst[D]. Chongqing: Chongqing University, 2018. | |
| 18 | 刘飞. 活性炭纤维负载金属氧化物复合材料的制备及其性能研究[D]. 成都: 西南交通大学, 2019. |
| LIU Fei. Preparation and properties of activated carbon fiber supported metal oxide composites[D]. Chengdu: Southwest Jiaotong University, 2019. | |
| 19 | BAIRD Thomas, DENNY Patrick J, HOYLE Robert, et al. Modified zinc oxide absorbents for low-temperature gas desulfurisation[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(22): 3375-3382. |
| [1] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435. |
| [2] | QI Yuan, XU Xinrong, RUAN Wei, WU Hao, WU Ke, ZHOU Yaming, YANG Hongmin. Characterization of aniline adsorption by modified activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 622-630. |
| [3] | ZHOU Yongquan, ZHANG Ai, LIU Yanan, WANG Zheng. Removal of glucocorticoids from aqueous solution by plasma jet combined with activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2209-2215. |
| [4] | Xinghui ZHANG,Jiaojiao YANG,Yaru DU. Desulfurization performance of activated carbon fiber after oxidation modification [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5151-5157. |
| [5] | LI Cancan, ZHU Jiamei, REN Ting, GUO Bin, YAN Hongfang. CO2 adsorption performance of modified activated carbon fibers [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3520-3527. |
| [6] | LIN Hao, ZHAO Jinyun, HU Jiapeng, LIU Ruilai, RAO Ruiye. A review on preparation and application of activated carbon nanofibers via electrospinning [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2986-2993. |
| [7] | LU Kang, WEI Jiana, XIONG Liang. Research on preparation and antibacterial properties of ZnO-activated carbon fiber [J]. Chemical Industry and Engineering Progree, 2015, 34(1): 208-211. |
| [8] | XUE Bei, ZHANG Xiaoping, LI Nan, ZHANG Pei. Adsorption characteristics of pyridine on rayon-based activated carbon fiber [J]. Chemical Industry and Engineering Progree, 2015, 34(07): 2055-2059. |
| [9] | LI Li1,HUANG Huacun2,WEI Tengyou1,SUN Jianhua1,TONG Zhangfa1. Influence of cerium additive on selective catalytic reduction of NOx with MnOx/ACFN catalyst [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2655-2660. |
| [10] | ZHANG Pei1,ZHANG Xiaoping1,FANG Yimin,LAN Yonghui3. Adsorption characteristics of quinoline on activated carbon fiber [J]. Chemical Industry and Engineering Progree, 2013, 32(01): 209-213. |
| [11] | ZHANG Pei1,ZHANG Xiaoping1,LAN Yonghui2,WEI Chaohai1. Adsorption and treatment of simulated coking waste water by activated carbon fiber [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2786-2790. |
| [12] | HUANG Huacun. Research advance in mechanism of low-temperature SCR of NO on carbon materials [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1478-. |
| [13] | ZHOU Xuan,YI Honghong,TANG Xiaolong,DENG Hua. Progress in the removal of SO2,CO2 and NOx in coal-combustion gases by activated carbon fibers [J]. Chemical Industry and Engineering Progree, 2011, 30(12): 2764-. |
| [14] | HUANG Xin1,HUANG Bichun1,ZHANG Chunju1,YE Daiqi1,LUO Cuihong2. Plasma modification of V-ACF for NO SCR at low temperatures [J]. Chemical Industry and Engineering Progree, 2010, 29(11): 2187-. |
| [15] | LI Haiyan,CHEN Qiufei,ZHANG Xuejun. Dynamic adsorption of toluene on pitch-based activated carbon fibers [J]. Chemical Industry and Engineering Progree, 2009, 28(9): 1522-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |