Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 424-435.DOI: 10.16085/j.issn.1000-6613.2022-0781
• Materials science and technology • Previous Articles Next Articles
ZHANG Xinhai(), ZHAO Sichen(), ZHU Hui, ZHANG Shoushi, WANG Kai
Received:
2022-04-28
Revised:
2022-05-31
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHAO Sichen
通讯作者:
赵思琛
作者简介:
张辛亥(1971-),男,教授,研究方向为安全工程、煤矿防灭火技术等。E-mail: zhangxinhai@126.com。
CLC Number:
ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435.
张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0781
原料 | 提供方 | 型号 |
---|---|---|
活性碳 纤维粉 | 江苏科净碳纤维有限公司 | KJF1500型,孔隙以微孔为主,具有大的比表面积 |
活性炭 | 苏州旋风活性炭有限公司 | 椰壳炭粉,具有丰富的微孔以及中孔结构 |
碳纳米管 | 苏州碳丰石墨烯科技有限公司 | 单壁碳纳米管,孔隙结构以中孔和大孔为主 |
去离子水 | 江苏沐阳环境工程科技有限公司 | — |
碳酸钠 | 天津致远化学试剂有限公司 | 分析纯(AR) |
原料 | 提供方 | 型号 |
---|---|---|
活性碳 纤维粉 | 江苏科净碳纤维有限公司 | KJF1500型,孔隙以微孔为主,具有大的比表面积 |
活性炭 | 苏州旋风活性炭有限公司 | 椰壳炭粉,具有丰富的微孔以及中孔结构 |
碳纳米管 | 苏州碳丰石墨烯科技有限公司 | 单壁碳纳米管,孔隙结构以中孔和大孔为主 |
去离子水 | 江苏沐阳环境工程科技有限公司 | — |
碳酸钠 | 天津致远化学试剂有限公司 | 分析纯(AR) |
碳材料 | 称重 /g | 加入水 质量/g | 上层滤液质量/g | 滤纸吸出水质量/g | 吸水 质量/g | 吸水率/% |
---|---|---|---|---|---|---|
活性碳纤维 | 3 | 13 | 7.3 | 0.6 | 5.1 | 176 |
椰壳活性炭 | 3 | 11.1 | 3.7 | 1.2 | 6.5 | 216 |
碳纳米管 | 1 | 30.47 | 11.88 | 8.01 | 10.58 | 1058 |
碳材料 | 称重 /g | 加入水 质量/g | 上层滤液质量/g | 滤纸吸出水质量/g | 吸水 质量/g | 吸水率/% |
---|---|---|---|---|---|---|
活性碳纤维 | 3 | 13 | 7.3 | 0.6 | 5.1 | 176 |
椰壳活性炭 | 3 | 11.1 | 3.7 | 1.2 | 6.5 | 216 |
碳纳米管 | 1 | 30.47 | 11.88 | 8.01 | 10.58 | 1058 |
样品 | 比表面积BET /m2·g-1 | 微孔面积 T-Plot/m2·g-1 | 平均吸附孔径 BET/nm |
---|---|---|---|
AFC | 978.8741 | 797.2340 | 1.9113 |
AC | 1378.5892 | 1091.8004 | 1.7756 |
SWNT | 223.2513 | 11.3447 | 29.7342 |
样品 | 比表面积BET /m2·g-1 | 微孔面积 T-Plot/m2·g-1 | 平均吸附孔径 BET/nm |
---|---|---|---|
AFC | 978.8741 | 797.2340 | 1.9113 |
AC | 1378.5892 | 1091.8004 | 1.7756 |
SWNT | 223.2513 | 11.3447 | 29.7342 |
材料 | pH |
---|---|
AFC | 6.01 |
AC | 8.04 |
SWNT | 7.97 |
材料 | pH |
---|---|
AFC | 6.01 |
AC | 8.04 |
SWNT | 7.97 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
AFC | 110 | 75 | 175 | 0.0272 |
AFC-Na2CO3-4% | 170 | 135 | 190 | 0.0330 |
AFC-Na2CO3-7% | 275 | 215 | 300 | 0.0523 |
AFC-Na2CO3-10% | 235 | 185 | 260 | 0.0456 |
AFC-Na2CO3-15% | 180 | 90 | 200 | 0.0335 |
AFC-Na2CO3-20% | 235 | 90 | 255 | 0.0439 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
AFC | 110 | 75 | 175 | 0.0272 |
AFC-Na2CO3-4% | 170 | 135 | 190 | 0.0330 |
AFC-Na2CO3-7% | 275 | 215 | 300 | 0.0523 |
AFC-Na2CO3-10% | 235 | 185 | 260 | 0.0456 |
AFC-Na2CO3-15% | 180 | 90 | 200 | 0.0335 |
AFC-Na2CO3-20% | 235 | 90 | 255 | 0.0439 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
AC | 110 | 75 | 165 | 0.0278 |
AC-Na2CO3-4% | 130 | 100 | 170 | 0.0290 |
AC-Na2CO3-7% | 150 | 140 | 185 | 0.0320 |
AC-Na2CO3-10% | 190 | 135 | 235 | 0.0393 |
AC-Na2CO3-15% | 160 | 60 | 200 | 0.0301 |
AC-Na2CO3-20% | 135 | 75 | 170 | 0.0276 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
AC | 110 | 75 | 165 | 0.0278 |
AC-Na2CO3-4% | 130 | 100 | 170 | 0.0290 |
AC-Na2CO3-7% | 150 | 140 | 185 | 0.0320 |
AC-Na2CO3-10% | 190 | 135 | 235 | 0.0393 |
AC-Na2CO3-15% | 160 | 60 | 200 | 0.0301 |
AC-Na2CO3-20% | 135 | 75 | 170 | 0.0276 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
SWNT | 5 | 5 | 15 | 0.0021 |
SWNT-Na2CO3-4% | 15 | 10 | 40 | 0.0067 |
SWNT-Na2CO3-7% | 60 | 50 | 110 | 0.0190 |
SWNT-Na2CO3-10% | 100 | 90 | 130 | 0.0228 |
SWNT-Na2CO3-15% | 105 | 90 | 125 | 0.0219 |
SWNT-Na2CO3-20% | 90 | 75 | 115 | 0.0200 |
脱硫剂名称 | H2S出现 时间/min | SO2出现 时间/min | 穿透时间 /min | 穿透硫容 /g-S·g-1 |
---|---|---|---|---|
SWNT | 5 | 5 | 15 | 0.0021 |
SWNT-Na2CO3-4% | 15 | 10 | 40 | 0.0067 |
SWNT-Na2CO3-7% | 60 | 50 | 110 | 0.0190 |
SWNT-Na2CO3-10% | 100 | 90 | 130 | 0.0228 |
SWNT-Na2CO3-15% | 105 | 90 | 125 | 0.0219 |
SWNT-Na2CO3-20% | 90 | 75 | 115 | 0.0200 |
1 | 中华人民共和国国家职业卫生标准 [S]. 北京: 中国标准出版社, 2019. |
National occupational health standards of the People’s Republic of China [S]. Beijing: Standards Press of China, 2019. | |
2 | 黄新, 朱道平. 硫化氢脱除方法述评[J]. 化学工业与工程技术, 2004, 25(5): 47-49, 62. |
HUANG Xin, ZHU Daoping. Review on removal technology of H2S[J]. Journal of Chemical Industry & Engineering, 2004, 25(5): 47-49, 62. | |
3 | DALRYMPLE D A, TROFE T W, EVANS J M. An overview of liquid redox sulfur recovery[J]. Chemical Engineering Progress, 1989, 85. |
4 | LIU Xinpeng, WANG Rui. H2S removal by peroxo heteropoly compound/ionic liquid solution[J]. Fuel Processing Technology, 2017, 160: 78-85. |
5 | 梁锋, 徐丙根, 施小红, 等. 湿式氧化法脱硫的技术进展[J]. 现代化工, 2003, 23(5): 21-24. |
LIANG Feng, XU Binggen, SHI Xiaohong, et al. Advances in desulfurization with wet oxidation process[J]. Modern Chemical Industry, 2003, 23(5): 21-24. | |
6 | 李石雷, 张冬冬, 宁平, 等. 液相催化氧化法脱除硫化氢的研究进展[J]. 广州化学, 2017, 42(5): 57-64. |
LI Shilei, ZHANG Dongdong, NING Ping, et al. Progress of liquid phase catalytic oxidation removing hydrogen sulfide[J]. Guangzhou Chemistry, 2017, 42(5): 57-64. | |
7 | 刘岱. 氧化铜基脱硫剂低温脱硫与再生性能研究[D]. 大连: 大连理工大学, 2017. |
LIU Dai. Low temperature desulfurization and regeneration performance of CuO-based adsorbents[D]. Dalian: Dalian University of Technology, 2017. | |
8 | XUE Mei, CHITRAKAR Ramesh, SAKANE Kohji, et al. Screening of adsorbents for removal of H2S at room temperature[J]. Green Chemistry, 2003, 5(5): 529-534. |
9 | JIANG Dahao, SU Lianghu, MA Lei, et al. Cu-Zn-Al mixed metal oxides derived from hydroxycarbonate precursors for H2S removal at low temperature[J]. Applied Surface Science, 2010, 256(10): 3216-3223. |
10 | DHAGE Priyanka, SAMOKHVALOV Alexander, REPALA Divya, et al. Copper-promoted ZnO/SiO2 regenerable sorbents for the room temperature removal of H2S from reformate gas streams[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8388-8396. |
11 | 颜杰, 李红, 刘科财, 等. 干法脱除硫化氢技术研究进展[J]. 四川化工, 2011, 14(5): 27-31. |
YAN Jie, LI Hong, LIU Kecai, et al. Research progress of removing H2S by dry method[J]. Sichuan Chemical Industry, 2011, 14(5): 27-31. | |
12 | 常化振, 赵朝成. 浸渍铜盐改性活性炭吸附/催化氧化低浓度H2S[J]. 石油化工, 2008, 37(11): 1195-1200. |
CHANG Huazhen, ZHAO Chaocheng. Adsorption & catalytic oxidation of low concentration H2S on activated carbon modified by copper salts[J]. Petrochemical Technology, 2008, 37(11): 1195-1200. | |
13 | 陈勇, 赖小林. 氧化铁/活性炭负载型硫化氢脱除剂制备及性能评价[J]. 工业催化, 2014, 22(9): 680-682. |
CHEN Yong, LAI Xiaolin. Preparation and performance evaluation of iron oxide/activated carbon supported hydrogen sulfide scavenger[J]. Industrial Catalysis, 2014, 22(9): 680-682. | |
14 | LI Yuran, LIN Yuting, XU Zhicheng, et al. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon[J]. Fuel Processing Technology, 2019, 189: 110-119. |
15 | 鲍勇强. 活性碳纤维负载掺铜BiVO4光催化剂降解车内甲醛的研究[D]. 重庆: 重庆大学, 2018. |
BAO Yongqiang. Study on the degradation of formaldehyde in car by activated carbon fiber loaded with copper-doped BiVO4 composite photocatalyst[D]. Chongqing: Chongqing University, 2018. | |
16 | 刘飞. 活性碳纤维负载金属氧化物复合材料的制备及其性能研究[D]. 成都: 西南交通大学, 2019. |
LIU Fei. Preparation and properties of activated carbon fiber supported metal oxide composites[D]. Chengdu: Southwest Jiaotong University, 2019. | |
17 | 钱佳燕, 赵彤, 吴逸雨, 等. 改性活性炭的制备及其吸附解析效果研究[J]. 辽宁化工, 2022, 51(2): 160-162. |
QIAN Jiayan, ZHAO Tong, WU Yiyu, et al. Study on preparation of modified activated carbon and its adsorption and resolution effect[J]. Liaoning Chemical Industry, 2022, 51(2): 160-162. | |
18 | 刘楠, 李伟, 张伟, 等. 碳纳米管在天然橡胶中的应用研究[J]. 中国橡胶, 2022, 38(1): 45-51. |
LIU Nan, LI Wei, ZHANG Wei, et al. Application of carbon nanotubes in natural rubber[J]. China Rubber, 2022, 38(1): 45-51. | |
19 | 包宗尧, 李永贵, 杨建忠, 等. 聚酰胺基碳纳米管复合纤维的研究现状与进展[J]. 丝绸, 2022, 59(2): 40-47. |
BAO Zongyao, LI Yonggui, YANG Jianzhong, et al. Research progress of polyamide-based carbon nanotube composite fibers[J]. Journal of Silk, 2022, 59(2): 40-47. |
[1] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[2] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[3] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[4] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[6] | CHANG Zhankun, ZHANG Chi, SU Bingqin, ZHANG Congzheng, WANG Jian, QUAN Xiaohui. Effect of H2S gaseous substrate on sludge bioleaching treatment efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2733-2743. |
[7] | GONG Chenjun, MEI Daofeng. Effects of tungsten decoration on the performance of a Ni-based oxygen carrier during chemical looping reforming of biogas for hydrogen generation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2130-2141. |
[8] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[9] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[10] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[11] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[12] | LIU Nan, HU Yiming, YANG Ying, LI Hongjin, GAO Zhuqing, HAO Xiuli. Microwave assisted co-pyrolysis of waste polypropylene /activated carbon to produce combustible pyrolysis gas and light pyrolysis oil [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 150-159. |
[13] | CHEN Xiaoyun, GUO Yadong, DI Lu, BI Dongmei, LI Kaikai, LIN Xiaona. Catalytic co-pyrolysis of biomass and plastic for aromatics production with boron doped activated carbon catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 199-209. |
[14] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423. |
[15] | QI Yuan, XU Xinrong, RUAN Wei, WU Hao, WU Ke, ZHOU Yaming, YANG Hongmin. Characterization of aniline adsorption by modified activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 622-630. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |