Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 436-447.DOI: 10.16085/j.issn.1000-6613.2022-0896
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
MENG Lingding(), MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang()
Received:
2022-05-16
Revised:
2022-06-09
Online:
2022-11-10
Published:
2022-10-20
Contact:
LIU Wenfang
通讯作者:
刘文芳
作者简介:
孟令玎(1998—),女,硕士研究生,研究方向为酶催化与酶固定化。E-mail:15520711215@163.com。
CLC Number:
MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447.
孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0896
1 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
LIANG Shan, ZONG Minhua, LOU Wenyong. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimiica Sinica, 2019, 77(11): 1099-1114. | |
2 | 李琦, 刘桂臻, 李小春, 等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术, 2022, 54(1): 157-166. |
LI Qi, LIU Guizhen, LI Xiaochun, et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences, 2022, 54(1): 157-166. | |
3 | YAASHIKAA P R, SENTHIL KUMAR P, VARJANI S J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization, 2019, 33: 131-147. |
4 | SULTANA S, CHANDRA P C, MARTHA S, et al. A review of harvesting clean fuels from enzymatic CO2 reduction[J]. RSC Advances, 2016, 6(50): 44170-44194. |
5 | BHATIA S K, BHATIA R K, JEON J M, et al. Carbon dioxide capture and bioenergy production using biological system – A review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 143-158. |
6 | Cristhian MOLINA-FERNÁNDEZ, LUIS Patricia. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
7 | TALEKAR S, JO B H, DORDICK J, et al. Carbonic anhydrase for CO2 capture, conversion and utilization[J]. Current Opinion in Biotechnology, 2022, 74: 230-240. |
8 | REN Sizhu, CHEN Ruixue, WU Zhangfei, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111779. |
9 | ASPATWAR Ashok, HAAPANEN Susanna, PARKKIL Seppo. An update on the metabolic roles of carbonic anhydrases in the model alga chlamydomonas reinhardtii[J]. Metabolites, 2018, 8(1): 22. |
10 | HEWETT-EMMETT D, TASHIAN R E. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families[J]. Molecular Phylogenetics and Evolution, 1996,5(1): 50-77. |
11 | ATKINS C A, PATTERSON B D, GRAHAM D. Plant carbonic anhydrases: I. Distribution of types among species[J]. Plant Physiology, 1972, 50(2): 214-217. |
12 | DIMARIO R J, MACHINGURA M C, WALDROP G L, et al. The many types of carbonic anhydrases in photosynthetic organisms[J]. Plant Science, 2018, 268: 11-17. |
13 | JENSEN E L, CLEMENT R, KOSTA A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton[J]. The ISME Journal, 2019, 13(8): 2094-2106. |
14 | LOFERER M J, TAUTERMANN C S, LOEFFLER H H, et al. Influence of backbone conformations of human carbonic anhydrase Ⅱ on carbon dioxide hydration: Hydration pathways and binding of bicarbonate[J]. Journal of the American Chemical Society, 2003, 125(29): 8921-8927. |
15 | SHEKH A Y, KRISHNAMURTHI K, MUDLIAR S N, et al. Recent advancements in carbonic anhydrase–driven processes for CO2 sequestration: Minireview[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(14): 1419-1440. |
16 | 朱龙观. 高等配位化学[M]. 上海: 华东理工大学出版社, 2009: 104-105. |
ZHU Longguan. Advanced coordination chemistry[M]. Shanghai: East China University of Science and Technology Press, 2009: 104-105. | |
17 | VERPOORTE J A, MEHTA S, EDSALL J T. Esterase activities of human carbonic anhydrases B and C[J]. Journal of Biological Chemistry, 1967, 242(18): 4221-4229. |
18 | SARRAF N S, SABOURY A A, RANJBAR B, et al. Structural and functional changes of bovine carbonic anhydrase as a consequence of temperature[J]. Acta Biochimica Polonica, 2004, 51(3): 665–671. |
19 | LAVECCHIA R, ZUGARO M. Thermal denaturation of erythrocyte carbonic anhydrase[J]. FEBS Letters, 1991, 292(1): 162-164. |
20 | Jesús FERNÁNDEZ-LUCAS. New insights on enzyme stabilization for industrial biocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(45): 15073-15074. |
21 | LUCA Viviana, VULLO Daniela, SCOZZAFAVA Andrea, et al. An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction[J]. Bioorganic & Medicinal Chemistry, 2013, 21(6): 1465-1469. |
22 | CAPASSO Clemente, LUCA Viviana, CARGINALE Vincenzo, et al. Biochemical properties of a novel and highly thermostable bacterial alpha-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1[J]. Journal of Enzyme inhibition and Medicinal Chemistry, 2012, 27(6): 892-897. |
23 | RUSSO M E, OLIVIERI G, CAPASSO C, et al. Kinetic study of a novel thermo-stable α-carbonic anhydrase for biomimetic CO2 capture[J]. Enzyme and Microbial Technology, 2013, 53(4): 271-277. |
24 | KANTH B K, JUN S, KUMARI S, et al. Highly thermostable carbonic anhydrase from Persephonella marina EX-H1: Its expression and characterization for CO2-sequestration applications[J]. Process Biochemistry, 2014, 49(12): 2114-2121. |
25 | JAMES P, ISUPOV M N, SAYER C, et al. The structure of a tetrameric [alpha]-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability[J]. Acta Crystallographica Section D, 2014, 70(10): 2607-2618. |
26 | FARIDI S, SATYANARAYANA T. Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration[J]. Environmental Science and Pollution Research, 2016, 23(15): 15236-15249. |
27 | LEHMANN M, PASAMONTES L, LASSEN S F, et al. The consensus concept for thermostability engineering of proteins[J]. Biochimica et Biophysica Acta (BBA)—Protein Structure and Molecular Enzymology, 2000, 1543(2): 408-415. |
28 | WIJMA H J, FLOOR R J, JANSSEN D B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability[J]. Current Opinion in Structural Biology, 2013, 23(4): 588-594. |
29 | ZHAO Yue, MIAO Yulu, ZHI Fengdong, et al. Rational design of pepsin for enhanced thermostability via exploiting the guide of structural weakness on stability[J]. Frontiers in Physics, 2021, 9: 755253. |
30 | VIEILLE C, ZEIKUS G J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1): 1-43. |
31 | DANIEL R M, DANSON M J, HOUGH D W, et al. Enzyme stability and activity at high temperatures in anatomy and physiology of extremophilic proteins[M]. Massachusetts: Nova Biomedical, 2008: 1-34. |
32 | BOONE C D, HABIBZADEGAN A, TU C, et al. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond[J]. Acta Crystallographica Section D, 2013, 69(8): 1414-1422. |
33 | WU Shenglan, CHEN Jinrui, MA Liang, et al. Design of carbonic anhydrase with improved thermostability for CO2 capture via molecular simulations[J]. Journal of CO2 Utilization, 2020, 38: 141-147. |
34 | ALVIZO O, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas[J]. Proceedings of the National Academy of Sciences, 2014, 111(46): 16436. |
35 | PARRA-CRUZ R, LAU P L, LOH H, et al. Engineering of thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability[J]. Journal of CO2 Utilization, 2020, 37: 1-8. |
36 | YAN Ming, LIU Zhixia, LU Diannan, et al. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature[J]. Biomacromolecules, 2007, 8(2): 560-565. |
37 | MERLE Geraldine, FRADETTE Sylvie, MADORE Eric, et al. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture[J]. Langmuir, 2014, 30(23): 6915-6919. |
38 | LI Juan, ZHOU Xincheng, ZHANG Lin, et al. Investigation on the immobilization of carbonic anhydrase and the catalytic absorption of carbon dioxide[J]. Energy & Fuels, 2017, 31(1): 778-784. |
39 | ZHU Yilin, LI Weiyi, SUN Guanzhong, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
40 | BUCHOLZ T L, HULVEY M K, REARDON J P, et al. Novel materials for carbon dioxide mitigation technology: Development of an organosilica coating containing carbonic anhydrase for applications in CO2 capture[M]. Amsterdam: Elsevier, 2015: 117-147. |
41 | LEIMBRINK M, NIKOLEIT K G, SPITZER R, et al. Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system[J]. Chemical Engineering Journal, 2018, 334: 1195-1205. |
42 | AL-DHRUB A H, SAHIN S, OZMEN I, et al. Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles[J]. Process Biochemistry, 2017, 57: 95-104. |
43 | KIM J K, ABDELHAMID M A A, PACK S P. Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports[J]. International Journal of Biological Macromolecules, 2019, 135: 969-977. |
44 | ZHANG Miaorong, ZHANG Yan, YANG Chuankai, et al. Enzyme-inorganic hybrid nanoflowers: Classification, synthesis, functionalization and potential applications[J]. Chemical Engineering Journal, 2021, 415: 129075. |
45 | CELIK Cagla, TASDEMIR Didar, DEMIRBAS Ayse, et al. Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications[J]. RSC Advances, 2018, 8(45): 25298-25303. |
46 | DUAN Linlin, LI Hui, ZHANG Yatao. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability[J]. ACS Omega, 2018, 3(12): 18234-18241. |
47 | WEN Huan, ZHANG Lei, DU Yingjie, et al. Bimetal based in organic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101171. |
48 | DU Yingjie, GAO Jing, ZHOU Liya, et al. Enzyme nanocapsules armored by metal-organic frameworks: a novel approach for preparing nanobiocatalyst[J]. Chemical Engineering Journal, 2017, 327: 1192-1197. |
49 | CUI Jiandong, REN Sizhu, SUN Baoting, et al. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges[J]. Coordination Chemistry Reviews, 2018, 370: 22-41. |
50 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. |
51 | GONG Xiao, WANG Yongjin, KUANG Tairong. ZIF-8-based membranes for carbon dioxide capture and separation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11204-11214. |
52 | GAO Song, HOU Jingwei, DENG Zeyu, et al. Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules[J]. Chem, 2019, 5(6): 1597-1608. |
53 | ASADI Vahideh, KARDANPOUR Reihaneh, TANGESTANINEJAD Shahram, et al. Novel bovine carbonic anhydrase encapsulated in a metal-organic framework: a new platform for biomimetic sequestration of CO2 [J]. RSC Advances, 2019, 9(49): 28460-28469. |
54 | REN Sizhu, FENG Yuxiao, WEN Huan, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration[J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. |
55 | REN Sizhu, LI Conghai, TAN Zhilei, et al. Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3372-3379. |
56 | 张士汉, 沈遥, 杜敏娥, 等. 一种固定化碳酸酐酶及其制备与在捕集烟气中二氧化碳的应用: CN109517816B[P]. 2021-07-27. |
ZHANG Shihan, SHEN Yao, DU Min'e, et al. An immobilized carbonic anhydrase and its preparation and application in capturing carbon dioxide in flue gas: CN109517816B[P]. 2021-07- 27. | |
57 | MIGLIARDINI F, LUCA V D, CARGINALE V, et al. Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29(1): 146-150. |
58 | PERFETTO R, PRETE S D, VULLO D, et al. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32(1): 759-766. |
59 | EFFENDI S S, CHIU C Y, CHANG Y K, et al. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration[J]. International Journal of Biological Macromolecules, 2020, 152: 930-938. |
60 | GITLIN I, CARBECK J D, WHITESIDES G M. Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis[J]. Angewandte Chemie International Edition, 2006, 45(19): 3022-3060. |
61 | DEMIR Y, DEMIR N, NADAROGLU H, et al. Purification and characterization of carbonic anhydrase from bovine erythrocyte plasma membrane[J]. Preparative Biochemistry & Biotechnology, 2000, 30(1): 49-59. |
62 | DAVY Raymond. Development of catalysts for fast, energy efficient post combustion capture of CO2 into water; an alternative to monoethanolamine (MEA) solvents[J]. Energy Procedia, 2009, 1(1): 885-892 |
63 | HU G, SMITH K H, NICHOLAS N J, et al. Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents[J]. Chemical Engineering Journal, 2017, 307: 49-55. |
64 | ZEVENHOVEN Ron, WIKLUND Anders, FAGERLUND Johan, et al. Carbonation of calcium-containing mineral and industrial by-products[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 110-119. |
65 | NAIR S K, CHRISTIANSON D W. Structural properties of human carbonic anhydrase II at pH 9.5[J]. Biochemical and Biophysical Research Communications, 1991, 181(2): 579-584. |
66 | FARIDI S, SATYANARAYANA T. Characteristics of recombinant alpha-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1[J]. International Journal of Biological Macromolecules, 2016, 89: 659-668. |
67 | TAN Shih, HAN Yinlung, YU Youjin, et al. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase[J]. Process Biochemistry, 2018, 73: 38-46. |
68 | SCHOFIELD K. Mercury emission control from coal combustion systems: A modified air preheater solution[J]. Combustion and Flame, 2012, 159(4): 1741-1747. |
69 | 朱轶林. 固定化碳酸酐酶的酶学性质和催化吸收CO2特性的实验研究[D]. 重庆: 重庆大学, 2015. |
ZHU Yilin. Research on enzymatic properties of immobilized carbonic anhydrase and CO2 catalytic absorption[D]. Chongqing: Chongqing University, 2015. | |
70 | RIORDAN J F. The role of metals in enzyme activity[J]. Annals of Clinical and Laboratory Science, 1977, 7(2): 119-29. |
71 | BOND G M, STRINGER J, BRANDVOLD D K, et al. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase[J]. Energy & Fuels, 2001, 15(2): 309-316. |
72 | RAMANAN R, KANNAN K, SIVANESAN S D, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii [J]. World Journal of Microbiology and Biotechnology, 2009, 25(6): 981-987. |
73 | 李娟, 张琳, 孙莹, 等. 固定化CA催化吸收模拟烟气中CO2实验研究[J]. 化工进展, 2017, 36(9): 3502-3507. |
LI Juan, ZHANG Lin, SUN Ying, et al. Experimental studies on catalytic absorption of CO2 in simulated flue gas by immobilized carbonic anhydrase[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3502-3507. | |
74 | 黄志华, 刘铭, 王宝光, 等. 甲酸脱氢酶用于辅酶NADH再生的研究进展[J]. 过程工程学报, 2006, 6(6): 1011-1016. |
HUANG Zhihua, LIU Ming, WANG Baoguang, et al. Formate dehydrogenase and its application in cofactor NADH regeneration[J]. The Chinese Journal of Process Engineering, 2006, 6(6): 1011-1016. | |
75 | AMAO Yutaka. Formate dehydrogenase for CO2 utilization and its application[J]. Journal of CO2 Utilization, 2018, 26: 623-641. |
76 | CASTILLO R, OLIVA M, MARTÍ S, et al. A theoretical study of the catalytic mechanism of formate dehydrogenase[J]. The Journal of Physical Chemistry B, 2008, 112(32): 10012-10022. |
77 | POPOV V O, LAMZIN V S. NAD+-dependent formate dehydrogenase[J]. The Biochemical journal, 1994, 301: 625-643. |
78 | TISHKOV Vl I, POPOV V O. Protein engineering of formate dehydrogenase[J]. Biomolecular Engineering, 2006, 23(2): 89-110. |
79 | ALPDAĞTAŞ S, YÜCEL S, KAPKAÇ H A, et al. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929[J]. Biotechnology Letters, 2018, 40(7): 1135-1147. |
80 | ŸZGÜN G, KARAGÜLER N G, TURUNEN O, et al. Characterization of a new acidic NAD+-dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum [J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122: 212-217. |
81 | ALTAŞ N, ASLAN A S, KARATAŞ E, et al. Heterologous production of extreme alkaline thermostable NAD+-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila [J]. Process Biochemistry, 2017, 61: 110-118. |
82 | TISHKOV V I, POPOV V O. Catalytic mechanism and application of formate dehydrogenase[J]. Biochemistry (Moscow), 2004, 69(11): 1252. |
83 | SLUSARCZYK Heike, FELBER Stephan, KULA Maria-regina, et al. Novel mutants of the formate dehydrogenase from Candida boidinii : US20030157664[P]. 2003-08-21. |
84 | 丁雪峰. 热稳定性增强的甲酸脱氢酶突变体及其制备方法: CN104342406A[P]. 2015-02-11. |
DING Xuefeng. Mutant formate dehydrogenase with enhanced heat stability and preparation method thereof: CN104342406A[P]. 2015-02-11. | |
85 | ROJKOVA A M, GALKIN A G, KULAKOVA L B, et al. Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices[J]. FEBS Letters, 1999, 445(1): 183-188. |
86 | ALEKSEEVA A A, SERENKO A A, KARGOV I S, et al. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations[J]. Protein Engineering, Design and Selection, 2012, 25(11): 781-788. |
87 | KURT Sinem, ORDU Emel. Effect of Met/Leu substitutions on the stability of NAD+-dependent formate dehydrogenases from Gossypium hirsutum [J]. Applied Microbiology and Biotechnology, 2021, 105(7): 2787-2798. |
88 | NETTO C G, NAKAMURA M, ANDRADE L H, et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 84: 136-143. |
89 | PIETRICOLA Giuseppe, OTTONE Carminna, FINO Debora, et al. Enzymatic reduction of CO2 to formic acid using FDH immobilized on natural zeolite[J]. Journal of CO2 Utilization, 2020, 42: 101343. |
90 | PIETRICOLA Giuseppe, TOMMASI Tonia, DOSA Melodj, et al. Synthesis and characterization of ordered mesoporous silicas for the immobilization of formate dehydrogenase (FDH)[J]. International Journal of Biological Macromolecules, 2021, 177: 261-270. |
91 | BINAY Barış, Dilek ALAGÖZ, YILDIRIM Deniz, et al. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH[J]. Beilstein Journal of Organic Chemistry, 2016, 12: 271-277. |
92 | Dilek ALAGÖZ, Ayhan ÇELIK, YILDIRIM Deniz, et al. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 130: 40-47. |
93 | LIN Peng, ZHANG Yonghui, YAO Guangxiao, et al. Immobilization of formate dehydrogenase on polyethylenimine-grafted graphene oxide with kinetics and stability study[J]. Engineering in Life Sciences, 2020, 20(3/4): 104-111. |
94 | YILDIRIM Deniz, Dilek ALAGÖZ, TOPRAK Ali, et al. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization[J]. Process Biochemistry, 2019, 85: 97-105. |
95 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的制备及其用于甲酸脱氢酶的固定化[J]. 工业催化, 2012, 20(8): 20-25. |
SONG Yanyan, KONG Weibao, SONG Hao, et al. Preparation of magnetic chitosan microspheres and their application to immobilization of formate dehydrogenase[J]. Industrial Catalysis, 2012, 20(8): 20-25. | |
96 | YOSHIMOTO Makoto, YAMASHITA Takayuki, YAMASHIRO Takuya. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow[J]. Biotechnology Progress, 2010, 26(4): 1047-1053. |
97 | KIM M H, PARK S, KIM Y H, et al. Immobilization of formate dehydrogenase from Candida boidinii through cross-linked enzyme aggregates[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 97: 209-214. |
98 | CHOE H, JOO J C, CHO D H, et al. Efficient CO2-reducing activity of NAD+-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas[J]. PLOS ONE, 2014, 9(7): e103111. |
99 | 刘文芳, 侯延慧, 侯本象, 等. 酶催化CO2序列还原为甲醛[J]. 中国化学工程学报(英文版), 2014, 22(S1): 1328-1332. |
LIU Wenfang, HOU Yanhui, HOU Benxiang, et al. Enzyme-catalyzed sequential reduction of carbon dioxide to formaldehyde[J]. Chinese Journal of Chemical Engineering, 2014, 22(S1): 1328-1332. | |
100 | CHEN Yijing, LI Peng, Hyunho NOH, et al. Stabilization of formate dehydrogenase in a metal-organic framework for bioelectrocatalytic reduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(23): 7682-7686. |
101 | SLUSARCZYK H, FELBER S, KULA M R, et al. Stabilization of NAD+-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues[J]. European Journal of Biochemistry, 2000, 267(5): 1280-1289. |
102 | WANG Yanzi, LI Manfeng, ZHAO Zhiping, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 116: 89-94. |
103 | ADDO P K, ARECHEDERRA R L, WAHEED A, et al. Methanol production via bioelectrocatalytic reduction of carbon dioxide: Role of carbonic anhydrase in improving electrode performance[J]. Electrochemical Solid-State Letters, 2011, 14(4): E9. |
104 | GAO Song, MOHAMMAD Munirah, YANG Haocheng, et al. Janus reactors with highly efficient enzymatic CO2 nanocascade at air-liquid interface[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42806-42815. |
105 | REN Sizhu, WANG Ziyuan, BILAL Muhammad, et al. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2 [J]. International Journal of Biological Macromolecules, 2020, 155: 110-118. |
106 | WANG Jing, Yongqin LYU. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule[J]. Chinese Journal of Chemical Engineering, 2021, 29: 317-325. |
107 | CHAI Milton, RAZMJOU Amir, CHEN Vicki. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor[J]. Journal of Membrane Science, 2021, 623: 118986. |
108 | ZHANG Xiaonan, SHAO Wenxuan, CHEN Biqiang, et al. Cross-linking of carbonic anhydrase and formate dehydrogenase based on amino acid specific recognition: Conversion of carbon dioxide to formic acid[J]. Enzyme and Microbial Technology, 2021, 146: 109763. |
109 | MAO Menglei, ZHAI Tingting, MENG Lingding, et al. Controllable preparation of mesoporous silica and its application in enzyme-catalyzed CO2 reduction[J]. Chemical Engineering Journal, 2022, 437: 135479. |
[1] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[2] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[3] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[4] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[5] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[6] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[7] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[8] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[9] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[10] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[11] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[12] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[13] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[14] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[15] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |