Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 239-246.DOI: 10.16085/j.issn.1000-6613.2021-2571
• Industrial catalysis • Previous Articles Next Articles
ZHANG Qi(), WANG Tao, ZHANG Xuebing, MENG Xiangkun, LYU Yijun, MEN Zhuowu(
)
Received:
2021-12-27
Revised:
2022-04-27
Online:
2022-11-10
Published:
2022-10-20
Contact:
MEN Zhuowu
张琪(), 王涛, 张雪冰, 孟祥堃, 吕毅军, 门卓武(
)
通讯作者:
门卓武
作者简介:
张琪(1986—),女,硕士,工程师,研究方向为煤间接液化。E-mail: qi.zhang.as@chnenergy.com.cn。
基金资助:
CLC Number:
ZHANG Qi, WANG Tao, ZHANG Xuebing, MENG Xiangkun, LYU Yijun, MEN Zhuowu. Effects of reduction conditions on fused iron catalyst for high temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 239-246.
张琪, 王涛, 张雪冰, 孟祥堃, 吕毅军, 门卓武. 还原条件对高温费托合成熔铁催化剂性能的影响[J]. 化工进展, 2022, 41(S1): 239-246.
织构参数 | 还原前 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|---|
比表面积/m²·g-1 | 1.3 | 15.7 | 15.3 | 20.1 | 16.3 |
孔容/cm³·g-1 | 0.008 | 0.107 | 0.108 | 0.114 | 0.107 |
平均孔径/nm | 3.157 | 20.232 | 20.569 | 18.258 | 20.117 |
织构参数 | 还原前 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|---|
比表面积/m²·g-1 | 1.3 | 15.7 | 15.3 | 20.1 | 16.3 |
孔容/cm³·g-1 | 0.008 | 0.107 | 0.108 | 0.114 | 0.107 |
平均孔径/nm | 3.157 | 20.232 | 20.569 | 18.258 | 20.117 |
元素分布 | 还原前 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|---|
m(Al)/m(Fe) | 0.020 | 0.012 | 0.016 | 0.023 | 0.007 |
m(K)/m(Fe) | 0.010 | 0.010 | 0.007 | 0.006 | 0.005 |
还原度/% | 0 | 75.15 | 85.83 | 93.82 | 96.24 |
元素分布 | 还原前 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|---|
m(Al)/m(Fe) | 0.020 | 0.012 | 0.016 | 0.023 | 0.007 |
m(K)/m(Fe) | 0.010 | 0.010 | 0.007 | 0.006 | 0.005 |
还原度/% | 0 | 75.15 | 85.83 | 93.82 | 96.24 |
项目 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|
X(CO)/% | 92.8 | 92.7 | 90.5 | 91.4 |
CH4(摩尔分数)/% | 34.1 | 37.4 | 32.5 | 27.3 |
C2~C4(摩尔分数)/% | 42.3 | 44.8 | 45.3 | 42.0 |
C5+(摩尔分数)/% | 23.6 | 17.8 | 22.2 | 30.7 |
C2~C4烯/烷比 | 0.4 | 1.4 | 1.1 | 1.4 |
项目 | 1000h-1 | 2000h-1 | 5000h-1 | 10000h-1 |
---|---|---|---|---|
X(CO)/% | 92.8 | 92.7 | 90.5 | 91.4 |
CH4(摩尔分数)/% | 34.1 | 37.4 | 32.5 | 27.3 |
C2~C4(摩尔分数)/% | 42.3 | 44.8 | 45.3 | 42.0 |
C5+(摩尔分数)/% | 23.6 | 17.8 | 22.2 | 30.7 |
C2~C4烯/烷比 | 0.4 | 1.4 | 1.1 | 1.4 |
1 | WANG Peng, CHEN Wei, CHIANG Fukuo, et al. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Science Advances, 2018, 4(10). |
2 | DRY E M. The Fischer-Tropsch process: 1950—2000[J]. Catalysis Today, 2002, 71(3): 227-241. |
3 | DICTOR A R, BELL T A. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts[J]. Journal of Catalysis, 1986, 97(1): 121-136. |
4 | 陈建刚, 相宏伟, 李永旺, 等. 费托法合成液体燃料关键技术研究进展[J]. 化工学报, 2003(4): 101-108. |
CHEN Jiangang, XIANG Hongwei, LI Yongwang, et al. Advance in key techniques of Fischer-Tropsch synthesis for liquid fuel production[J]. CIESC Journal, 2003(4): 101-108. | |
5 | 韩小雪, 陈妍希, 赵俏, 等. 碳限域铁基费托合成催化剂研究进展[J].化工进展, 2021, 40(4): 1917-1927. |
HAN Xiaoxue, CHEN Yanxi, ZHAO Qiao, et al. Advance in carbon-confined iron-based catalysts for Fischer-Tropsch catalysts[J]. Chemical Industry and engineering progress, 2021, 40(4): 1917-1927. | |
6 | SANTOS P V, WEZENDONK A T, JAENJUAN J D, et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nature Communications, 2015, 6: 6451. |
7 | SMIT De E, WECKHUYSEN M B. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37: 2758-2781. |
8 | NIELSEN R M, MOSS B A, BJORNLUND A S, et al. Reduction and carburization of iron oxides for Fischer-Tropsch synthesis[J]. Journal of Energy Chemistry, 2020, 51(12): 48-61. |
9 | 刘化章. 氨合成催化剂: 实践与理论[M]. 北京: 化学工业出版社, 2007. |
LIU Huazhang. Ammonia synthesis catalysts[M]. Beijing: Chemical Industry Press, 2007. | |
10 | 郑遗凡, 刘化章, 李小年. 熔铁催化剂还原过程的原位XRD研究及活性相的形成机理[J]. 高等学校化学学报, 2009, 30(6): 1177-1182. |
ZHENG Yifan, LIU Huazhang, LI Xiaonian. In situ X-ray diffraction investigation on reduction process of ammonia-synthesis fused-iron catalysts and the formation mechanism of its active phase[J]. Chemical Journal of Chinese Universities, 2009, 30(6): 1177-1182. | |
11 | 杨霞珍, 张红, 霍超, 等. Fe-M(M=V、Cr、Mn)熔铁催化剂的费-托合成反应性能研究[J]. 高校化学工程学报, 2018, 32(6): 1359-1364. |
YANG Xiazhen, ZHANG Hong, HUO Chao, et al. Application of fused iron catalysts Fe-M (M=V, Cr, Mn) in Fischer-Tropsch synthesis[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1359-1364. | |
12 | CHENG K, ORDOMSKY V V, VIRGINIE M, et al. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts[J]. Applied Catalysis A General, 2014, 488: 66-77. |
13 | ADELEKE A A, GNANAMANIM K. Alumina-supported iron catalyst-long-term study of the light product distribution in Fischer-Tropsch synthesis[J]. Materials Today Chemistry, 2021, 21: 100490. |
14 | ZHANG Juan, ABBAS Mohamed, CHEN Jiangang. The evolution of Fe phases of a fused iron catalyst during reduction and Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2017, 7(16): 3626-3636. |
15 | 刘化章, 李小年. 氨合成催化剂母体相组成对还原性能的影响[J]. 化工学报, 1997, 48(3): 354-362. |
LIU Huazhang, LI Xiaonian. Effect of precursor phase composition of ammonia synthesis catalyst on reduction performance[J]. CIESC Journal, 1997, 48(3): 354-362. | |
16 | LI Senzi, LI Anwu, KRISHNAMOORTHY Sundaram, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catalysis Letters, 2001, 77(4): 197-205. |
17 | HAO Qinglan, LIU Fuxia, WANG Hong, et al. Effect of reduction temperature on a spray-dried iron-based catalyst for slurry Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 104-111. |
18 | SMIT De E, CINQUINI F, ANDREW M B, et al. Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C)[J]. Journal of the American Chemical Society, 2010, 132(42): 14928-14941. |
19 | 龙永强, 刘平, 刘勇, 等. 相场法模拟球形和盘形第二相粒子对晶粒长大的影响[J]. 中国有色金属学报, 2009, 19(1): 84-89. |
LONG Yongqiang, LIU Ping, LIU Yong, et al. Phase field modeling for effects of spherical and discal second-phase particles on grain growth[J]. Chinese Journal of Nonferrous Metals, 2009, 19(1): 84-89. | |
20 | ZHU Wenhui, WINTERSTEIN P J, YANG D W, et al. In situ atomic-scale probing of the reduction dynamics of two-dimensional Fe2O3 nanostructures[J]. Acs Nano, 2017,11: 656-664. |
21 | KARIMI A, POUR A N, TORABI F, et al. Fischer-Tropsch synthesis over ruthenium-promoted Co/Al2O3 catalyst with different reduction procedures[J]. Journal of Natural Gas Chemistry, 2010, 19(5): 503-508. |
22 | STEEN V E, PRINSLOO F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts[J]. Catalysis Today, 2002, 71(3-4): 327-334. |
23 | DICTOR A R, BELL T A. Studies of Fischer-Tropsch synthesis over a fused iron catalyst[J]. Applied Catalysis, 1986, 20(1-2): 145-162. |
24 | 李小年, 傅冠平, 刘化章. 助催化剂对Fe1- x O基氨合成催化剂活性的影响[J]. 催化学报, 1998, 19(1): 24-28. |
LI Xiaonian, FU Guanping, LIU Huazhang, et al. The effect of promoters on reduction performance of Fe1- x O based ammonia synthesis catalyst[J]. Chinese Journal of Catalysis, 1998, 19(1): 24-28. | |
25 | ZHANG Juan, SUN Taomei, DING Jian, et al. Influences of melting method on fused iron catalysts for Fischer-Tropsch synthesis[J]. RSC Advances, 2016, 6(65): 1-16. |
26 | DUAN Xuezhi, WANG Di, QIAN Gang, et al. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Journal of Energy Chemistry, 2016, 25(2): 311-317. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[4] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[9] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[10] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[15] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 377
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 238
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |