Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 190-198.DOI: 10.16085/j.issn.1000-6613.2022-0827
• Industrial catalysis • Previous Articles Next Articles
KOU Jiawei1(), CHENG Shuyan2(), CHENG Fangqin3
Received:
2022-05-06
Revised:
2022-06-22
Online:
2022-11-10
Published:
2022-10-20
Contact:
CHENG Shuyan
通讯作者:
程淑艳
作者简介:
寇佳伟(1984—),男,博士,讲师,研究方向为类水滑石功能材料。E-mail:koujiawei@tyut.edu.cn。
基金资助:
CLC Number:
KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198.
寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0827
类水滑石基催化剂 | 主要产物 | 产率/μmol·h-1·g-1 | 参考文献 |
---|---|---|---|
β-In2S3/NiAl-HTLCs | CH4 | 36.1 | [ |
TiO2/NiAl-HTLCs | CH4 | 20.56 | [ |
Fe3O4/MgAl-HTLCs | CO | 442.2 | [ |
TiO2-x /CoAl-HTLCs | CH3OH | 251 | [ |
Ag(Au)/Zn3Ga-HTLCs | CO | 231 | [ |
NCDs/g-C3N4/CoAl-HTLCs | CH4 | 25.69 | [ |
ZnCuGa-HTLCs | CH3OH | 26 | [ |
类水滑石基催化剂 | 主要产物 | 产率/μmol·h-1·g-1 | 参考文献 |
---|---|---|---|
β-In2S3/NiAl-HTLCs | CH4 | 36.1 | [ |
TiO2/NiAl-HTLCs | CH4 | 20.56 | [ |
Fe3O4/MgAl-HTLCs | CO | 442.2 | [ |
TiO2-x /CoAl-HTLCs | CH3OH | 251 | [ |
Ag(Au)/Zn3Ga-HTLCs | CO | 231 | [ |
NCDs/g-C3N4/CoAl-HTLCs | CH4 | 25.69 | [ |
ZnCuGa-HTLCs | CH3OH | 26 | [ |
1 | LI Xin, YU Jiaguo, Jingxiang LOW, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534. |
2 | LIU Jun, MA Nanke, WU Wei, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
3 | HALMANN M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells[J]. Nature, 1978, 275(5676): 115-116. |
4 | KAWAMURA S, PUSCASU M C, YOSHIDA Y, et al. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV-visible light[J]. Applied Catalysis A: General, 2015, 504: 238-247. |
5 | SCHREIER M, GAO P, MAYER M T, et al. Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst[J]. Energy & Environmental Science, 2015, 8(3): 855-861. |
6 | SATO Shunsuke, ARAI Takeo, MORIKAWA Takeshi, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts[J]. Journal of the American Chemical Society, 2011, 133(39): 15240-15243. |
7 | ARAI Takeo, SATO Shunsuke, KAJINO Tsutomu, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes[J]. Energy & Environmental Science, 2013, 6(4): 1274-1282. |
8 | CHU Sheng, Pengfei OU, GHAMARI Pegah, et al. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface[J]. Journal of the American Chemical Society, 2018, 140(25): 7869-7877. |
9 | KANECO Satoshi, UENO Yousuke, KATSUMATA Hideyuki, et al. Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol[J]. Chemical Engineering Journal, 2009, 148(1): 57-62. |
10 | CHOI S K, KANG U, LEE S, et al. Sn-coupled p-Si nanowire arrays for solar formate production from CO2 [J]. Advanced Energy Materials, 2014, 4(11): 1301614. |
11 | ALENEZI K, IBRAHIM S K, LI P, et al. Solar fuels: photoelectrosynthesis of CO from CO2 at p-type Si using Fe porphyrin electrocatalysts[J]. Chemistry-a European Journal, 2013, 19(40): 13522-13527. |
12 | O’M BOCKRIS J, WASS J C. The photoelectrocatalytic reduction of carbon-dioxide[J]. Journal of the Electrochemical Society, 1989, 136(9): 2521-2528. |
13 | WON D H, CHUNG J, PARK S H, et al. Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(3): 1089-1095. |
14 | GUZMAN Diego, ISAACS Mauricio, Igor OSORIO-ROMAN, et al. Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19865-19869. |
15 | BACHMEIER A, MURPHY B J, ARMSTRONG F A. A multi-heme flavoenzyme as a solar conversion catalyst[J]. Journal of the American Chemical Society, 2014, 136(37): 12876-12879. |
16 | SAKIMOTO K K, WONG A B, YANG P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
17 | WANG K, WANG T, ISLAM Q A, et al. Layered double hydroxide photocatalysts for solar fuel production[J]. Chinese Journal of Catalysis, 2021, 42(11): 1944-1975. |
18 | ZHAO Guoqing, ZOU Jiao, CHEN Xiaoqing, et al. Layered double hydroxides materials for photo(electro-) catalytic applications[J]. Chemical Engineering Journal, 2020, 397: 125407. |
19 | FEITKNECHT W. The formation of double hydroxides between bi- and tri-valent metals[J]. Helvetica Chimica Acta, 1942, 25: 555-569. |
20 | ALLMANN Rudolf. Crystal structure of pyroaurite[J]. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, 1968, 24(7): 972-977. |
21 | TAYLOR H F. Segregation and cation-ordering in sjogrenite and pyroaurite[J]. Mineralogical Magazine, 1969, 37(287): 338-342. |
22 | YANG Zhongzhu, WEI Jingjing, ZENG Guangming, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2 [J]. Coordination Chemistry Reviews, 2019, 386: 154-182. |
23 | XU Ming, WEI Min. Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943. |
24 | NALAWADE P, AWARE B, KADAM V J, et al. Layered double hydroxides: a review[J]. Journal of Scientific & Industrial Research, 2009, 68(4): 267-272. |
25 | FAN G, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
26 | MISHRA Geetanjali, DASH Barsha, PANDEY Sony. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials[J]. Applied Clay Science, 2018, 153: 172-186. |
27 | MARAPPA S, RADHA S, KAMATH P V. Nitrate-intercalated layered double hydroxides structure model, order, and disorder[J]. European Journal of Inorganic Chemistry, 2013, 12: 2122-2128. |
28 | TANG Junwang, ZOU Zhigang, YE Jinhua. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angewandte Chemie International Edition, 2004, 43(34): 4563-4566. |
29 | ZHAO Yufei, ZHANG Shitong, LI Bei, et al. A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix[J]. Chemistry: A European Journal, 2011, 17(47): 13175-13181. |
30 | MAEDA Kazuhiko, SAKAMOTO Naoyuki, IKEDA Takahiro, et al. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light[J]. Chemistry—A European Journal, 2010, 16(26): 7750-7759. |
31 | PAREDES S P, VALENZUELA M A, FETTER G, et al. TiO2/MgAl layered double hydroxides mechanical mixtures as efficient photocatalysts in phenol degradation[J]. Journal of Physics and Chemistry of Solids, 2011, 72(8): 914-919. |
32 | PARIDA Kulamani, MOHAPATRA Lagnamayee, BALIARSINGH Niranjan. Effect of Co2+ substitution in the framework of carbonate intercalated Cu/Cr LDH on structural, electronic, optical, and photocatalytic properties[J]. Journal of Physical Chemistry C, 2012, 116(42): 22417-22424. |
33 | XIONG Xuyang, ZHAO Yufei, SHI Run, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals[J]. Science Bulletin, 2020, 65(12): 987-994. |
34 | XU Z, ZHANG J, ADEBAJO M O, et al. Catalytic applications of layered double hydroxides and derivatives[J]. Applied Clay Science, 2011, 53(2): 139-150. |
35 | CHONG Ruifeng, SU Caihong, DU Yuqing, et al. Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction[J]. Journal of Catalysis, 2018, 363: 92-101. |
36 | SANTOS R M M, TRONTO J, BRIOIS V, et al. Thermal decomposition and recovery properties of ZnAl-CO3 layered double hydroxide for anionic dye adsorption: insight into the aggregative nucleation and growth mechanism of the LDH memory effect[J]. Journal of Materials Chemistry A, 2017, 5(20): 9998-10009. |
37 | MOKHTAR M, INAYAT A, OFILI J, et al. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: a comparative study[J]. Applied Clay Science, 2010, 50(2): 176-181. |
38 | PENG Feng, WANG Donghui, CAO Huiliang, et al. Loading 5-Fluorouracil into calcined Mg/Al layered double hydroxide on AZ31 via memory effect[J]. Materials Letters, 2018, 213(383-386. |
39 | HAN Jingbin, YAN Dongpeng, SHI Wenying, et al. Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior[J]. Journal of Physical Chemistry B, 2010, 114(17): 5678-5685. |
40 | GONZALEZ M A, PAVLOVIC I, ROJAS-DELGADO R, et al. Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide-humate hybrid. Sorbate and sorbent comparative studies[J]. Chemical Engineering Journal, 2014, 254: 605-611. |
41 | WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
42 | XIE Shunji, ZHANG Qinghong, LIU Guodong, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications, 2016, 52(1): 35-59. |
43 | CHANG Xiaoxia, WANG Tuo, YANG Piaoping, et al. The development of cocatalysts for photoelectrochemical CO2 reduction[J]. Advanced Materials, 2019, 31(31): 1804710. |
44 | PRASAD C, TANG H, BAHADUR I. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: a recent review[J]. Journal of Molecular Liquids, 2019, 281: 634-654. |
45 | LI Kan, PENG Bosi, PENG Tianyou. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016, 6(11): 7485-7527. |
46 | TU Wenguang, ZHOU Yong, ZOU Zhigang. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626. |
47 | SHEN Qi, CHEN Zuofeng, HUANG Xiaofeng, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays[J]. Environmental Science & Technology, 2015, 49(9): 5828-5835. |
48 | HARA Kohjiro, KUDO Akihiko, SAKATA Tadayoshi, et al. High efficiency electrochemical reduction of carbon dioxide under high-pressure on a gas diffusion electrode containing pt catalysts[J]. Journal of the Electrochemical Society, 1995, 142(4): L57-L59. |
49 | MOHAPATRA Lagnamayee, PARIDA Kulamani. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(28): 10744-10766. |
50 | HAO Xiaojie, TAN Ling, XU Yanqi, et al. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500nm[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 3008-3015. |
51 | HOU Xiaoxiao, XU Chenghua, LIU Yulu, et al. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde[J]. Journal of Catalysis, 2019, 379: 147-153. |
52 | WANG Ruonan, QIU Zhongyong, WAN Shipeng, et al. Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction[J]. Chemical Engineering Journal, 2022, 427: 130863. |
53 | ZHOU Ling, SLANY Michal, BAI Bingbing, et al. Enhanced removal of sulfonated lignite from oil wastewater with multidimensional MgAl-LDH nanoparticles[J]. Nanomaterials, 2021, 11(4): 861. |
54 | WANG Kaixuan, MIAO Chenglin, LIU Yanan, et al. Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction[J]. Applied Catalysis B-Environmental, 2020, 270: 118878. |
55 | JO W K, KUMAR S, TONDA S. N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4 [J]. Composites Part B: Engineering, 2019, 176: 107212. |
56 | MIAO Yufang, GUO Ruitang, GU Jingwen, et al. Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction[J]. Applied Surface Science, 2020, 527: 146792. |
57 | Wankuen JO, KUMAR Santosh, TONDA Surendar. A green approach to the fabrication of a TiO2/NiAl-LDH core-shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels[J]. Journal of Materials Chemistry A, 2020, 8(16): 8020-8032. |
58 | GAO Ge, ZHU Zhi, ZHENG Jia, et al. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism[J]. Journal of Colloid and Interface Science, 2019, 555: 1-10. |
59 | ZIARATI Abolfazl, BADIEI Alireza, GRILLO Rossella, et al. 3D Yolk@shell TiO2- x /LDH architecture: tailored structure for visible light CO2 conversion[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5903-5910. |
60 | AHMED Naveed, MORIKAWA Motoharu, IZUMI Yasuo. Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts[J]. Catalysis Today, 2012, 185(1): 263-269. |
61 | LAKHI K S, PARK D H, AL-BAHILY K, et al. Mesoporous carbon nitrides: synthesis, functionalization, and applications[J]. Chemical Society Reviews, 2017, 46(1): 72-101. |
[1] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[2] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[3] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[4] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[5] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[6] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[7] | CHENG Rong, DENG Ziqi, XIA Jincheng, LI Jiang, SHI Lei, ZHENG Xiang. Research progress on photocatalysis systems for inactivation of microbial aerosol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 957-968. |
[8] | YAO Wen, ZHANG Yuchen, TENG Wenxin, LI Jiangling. Effect of surfactant on the preparation of Ca-doped β-In2S3 microstructure and its performance in photocatalytic degradation of methyl orange [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 774-782. |
[9] | DUO Jia, YAO Guodong, WANG Yingji, ZENG Xu, JIN Binbin. Effects on the photo-degradation of norfloxacin using modified Au-TiO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 624-630. |
[10] | YANG Fu, LIU Mengting, MA Shulan, WEI Yixuan, OU Rui, WANG Xuyu, LI Lulu, ZHANG Wuxiang, PAN Jianming. Advanced in catalytic elimination of volatile organic compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4801-4812. |
[11] | XUE Lijing, FEI Xing, LIU Jianglin, WU Linjun, QIU Zhongjie, XU Quanzhou, ZHONG Xiaowen, LIN Xuliang, QIN Yanlin. Research progress on the preparation and application of lignin-based carbon catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2441-2450. |
[12] | MA Haofei, YUAN Peng, SHEN Boxiong. Research progress of preparation and utilization of perovskite-type photocatalyst in romoval of typical gaseous pollutants [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 721-729. |
[13] | ZHOU Jie, SUN Yue, BAO Yan, LIU Zejue, ZHANG Shasha, ZHU Beibei, WANG Lu, GUAN Guofeng. Research progress on modification strategy of graphite carbon nitride based on dimensional regulation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6430-6442. |
[14] | ZHANG Yingfang, DONG Qingxi, MA Chun, DONG Xiaoli, MA Hongchao. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244. |
[15] | YUAN Yajing. Progress in water treatment technology for perfluorinated or polyfluorinated alkyl substances [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 397-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |