Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 238-244.DOI: 10.16085/j.issn.1000-6613.2020-1778
• Industrial catalysis • Previous Articles Next Articles
ZHANG Yingfang(), DONG Qingxi, MA Chun, DONG Xiaoli, MA Hongchao(
)
Received:
2020-09-04
Revised:
2021-03-08
Online:
2021-11-09
Published:
2021-10-25
Contact:
MA Hongchao
通讯作者:
马红超
作者简介:
张英芳(1996—),女,硕士研究生,研究方向为光催化降解染料废水。E-mail:基金资助:
CLC Number:
ZHANG Yingfang, DONG Qingxi, MA Chun, DONG Xiaoli, MA Hongchao. Preparation and photocatalytic properties of Co3O4-Bi2O2CO3 catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 238-244.
张英芳, 董清溪, 马春, 董晓丽, 马红超. Co3O4-Bi2O2CO3催化剂的制备及其光催化性能[J]. 化工进展, 2021, 40(S1): 238-244.
1 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013,64(1): 91-101. |
REN N Q, ZHOU X J, GUO W Q, et al. Research progress on treatment technology of dye wastewater[J]. CIESC Journal, 2013, 64(1): 91-101. | |
2 | LI H Y. Catalytic wet peroxide oxidation with hydrogen peroxide treatment of simulated dye wastewater[D]. Xi’an: Northwest University, 2008. |
3 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
4 | XU T, ZHU R, ZHU G, et al. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH[J]. Applied Catalysis B: Environmental, 2017, 212: 50-58. |
5 | LI H Y, SUN Y J, CAI B, et al. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance[J]. Applied Catalysis B: Environmental, 2015, 170/171: 206-214. |
6 | CAO R R, ZHANG T, HUANG H W, et al. Novel Y doped Bi2WO6 photocatalyst: hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation[J]. Materials Characterization, 2015, 101(19): 166-172. |
7 | XU Y S, YU Y X, ZHANG W D. Wide bandgap Bi2O2CO3-coupled Bi2MoO6 heterostructured hollow microspheres: one-pot synthesis and enhanced visible-light photocatalytic activity[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(9):6800. |
8 | ZHAO Z, ZHOU Y, WANG F, et al. Polyaniline-decorated (001) facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 730-737. |
9 | ZAI J, CAO F, LIANG N, et al. Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance[J]. Journal of Hazardous Materials, 2017, 321: 464-472. |
10 | PENG S, LI L, TAN H, et al. Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances[J]. Journal of Materials Chemistry A, 2013, 1: 7630-7638. |
11 | ZHENG Y, DUAN F, CHEN M, et al. Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 34-40. |
12 | HU L H, PENG Q, LI Y D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society, 2008, 130(48): 16136-16137. |
13 | WANG C, REN B, HURSTHOUSE A S, et al. Visible light-driven photocatalytic degradation of 1,2,4-trichlorobenzene with synthesized Co3O4 photocatalyst[J]. Polish Journal of Environmental Studies, 2018, 27(5): 2285-2292. |
14 | LIN Z C, QIAO X W. Coral-like Co3O4 decorated N-doped carbonp articles as active materials for oxygen reduction reaction and supercapacitor[J]. Scientific Reports, 2018, 8(1): 1802. |
15 | LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786. |
16 | XIA X H, TU J P, ZHANG Y Q, et al. Freestanding Co3O4 nanowire array for high performance supercapacitors[J]. RSC Advances, 2012, 2(5): 1835. |
17 | LI Y, HUANG K, ZENG D, et al. Preparation and application of Co3O4 nanostructures with various morphologies[J]. Progress in Chemistry, 2010, 22(11): 2119-2125. |
18 | YUSUF S, JIAO F. Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters[J]. ACS Catalysis, 2012, 2(12): 2753-2760. |
19 | ZHANG N, SHI J, MAO S S, et al. Co3O4 quantum dots: reverse micelle synthesis and visible-light-driven photocatalytic overall water splitting[J]. Chemical Communications, 2014, 50(16): 2002-2004. |
20 | JANA T K, PAL A, CHATTERJEE K, et al. Magnetic and photocatalytic study of Co3O4-ZnO nanocomposite[J]. Journal of Alloys & Compounds, 2015, 653: 338-344. |
21 | HUANG R, HUANG S, CHEN D, et al. Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light[J]. Journal of Colloid & Interface Science, 2019, 542: 460-468. |
22 | HSIEH S H, LEE G J, CHEN C Y, et al. Hydrothermal synthesis of mesoporous Bi2O3/Co3O4 microsphere and photocatalytic degradation of orange Ⅱ dyes by visible light[J]. Topics in Catalysis, 2013, 56(9/10): 623-629. |
23 | WARANG T, PATEL N, FERNANDES R, et al. Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye[J]. Applied Catalysis B: Environmental, 2013, 132/133: 204-211. |
24 | LIANG N, WANG M, JIN L, et al. Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11698. |
25 | TANG C N, LIU E Z, WAN J, et al. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 181:707-715. |
26 | XIAO Q, ZHANG J, XIAO C, et al. Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation[J]. Catalysis Communications, 2008, 9(6):1247-1253. |
27 | AI Z H, HO W K, LEE S, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11):4143. |
28 | LU H J, XU L L, WEI B, et al. Enhanced photosensitization process induced by the p-n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B[J]. Applied Surface Science, 2014, 303(5):360-366. |
29 | LIOTTA L F, CARLO G D, PANTALEO G, et al. Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Applied Catalysis B: Environmental, 2006, 66(3/4): 217-227. |
30 | QIU F, LI W, WANG F, et al. Preparation of novel p-n heterojunction Bi2O2CO3/BiOBr photocatalysts with enhanced visible light photocatalytic activity[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 517: 25-32. |
31 | ZHAO W, LIU Y, WEI Z B, et al. Fabrication of a novel p-n heterojunction photocatalyst n-BiVO4@p-MoS2 with core-shell structure and its excellent visible-light photocatalytic reduction and oxidation activities[J]. Applied Catalysis B: Environmental, 2016, 185: 242-252. |
32 | WANG F, ZHAO Z, ZHANG K, et al. Topochemical transformation of low-energy crystal facets to high-energy facets: a case from Bi2O2CO3{001} facets to β-Bi2O3{001} facets with improved photocatalytic oxidation of NO[J]. Crystengcomm, 2015, 17: 6098-6102. |
33 | JIN L, ZHU G Q, HOJAMBERDIEV M, et al. A Plasmonic Ag-AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13718-13727. |
34 | WANG Q, YUN G, BAI Y, et al. Photodegradation of rhodamine B with MoS2/Bi2O2CO3 composites under UV light irradiation[J]. Applied Surface Science, 2014, 313: 537-544. |
35 | LONG M, CAI W, CAI J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. The Journal of Physical Chemistry B, 2006, 110(41): 20211-20216. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 792
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 271
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |