Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 397-403.DOI: 10.16085/j.issn.1000-6613.2021-0093
• Resources and environmental engineering • Previous Articles Next Articles
Received:
2021-01-14
Revised:
2021-03-12
Online:
2021-11-09
Published:
2021-10-25
作者简介:
袁雅静(1984—),女,硕士,研究方向为市政给水工程。E-mail:基金资助:
CLC Number:
YUAN Yajing. Progress in water treatment technology for perfluorinated or polyfluorinated alkyl substances[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 397-403.
袁雅静. 全氟或多氟烷基物质水处理技术研究进展[J]. 化工进展, 2021, 40(S1): 397-403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0093
1 | FUJII S, POLPRASERT C, TANAKA S, et al. New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds—a review paper[J]. AQUA, 2007, 56(5): 313-326. |
2 | HOUTZ E F, HIGGINS C P, FIELD J A, et al. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil[J]. Environmental Science & Technology, 2013, 47(15): 8187-8195. |
3 | ROSS I, MCDONOUGH J, MILES J, et al. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 2018, 28(2): 101-126. |
4 | GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife[J]. Environmental Science and Technology, 2001, 35(7): 1339-1342. |
5 | DOMBROWSKI P M, KAKARLA P, CALDICOTT W, et al. Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS[J]. Remediation Journal, 2018, 28(2): 135-150. |
6 | CARTER K E, FARRELL J. Removal of perfluorooctane and perfluorobutane sulfonate from water via carbon adsorption and ion exchange[J]. Separation Science and Technology, 2010, 45(6): 762-767. |
7 | LIANG X Q, GONDAL M A, CHANG X F, et al. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution[J]. Journal of Environmental Science and Health, Part A, 2011,46(13): 1482-1490. |
8 | OCHOA-HERRERA V, SIERRA-ALVAREZ R, et al. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge[J]. Chemosphere, 2008, 72(10): 1588-1593. |
9 | PUNYAPALAKUL P, SUKSOMBOON K, PRARAT P, et al. Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas[J]. Separation Science and Technology, 2013, 48(5): 775-788. |
10 | DENG S, NIU L, BEI Y, et al. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization[J]. Chemosphere, 2013, 91(2): 124-130. |
11 | SCHEPELINA O, ZHAROV I. Poly(2-(dimethylamino)ethyl methacrylate)-modified nanoporous colloidal films with pH and ion response[J]. Langmuir, 2008, 24(24): 14188-14194. |
12 | BOUDREAU T M, SIBLEY P K, MABURY S A, et al. Laboratory evaluation of the toxicity of perfluorooctane sulfonate (PFOS) on selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicaria[J]. Archives of Environmental Contamination and Toxicology, 2003, 44: 307-313. |
13 | WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations[J]. Water Research, 2011, 45(9): 2925-2930. |
14 | MERDY P, HUCLIER S, KOOPALET L K, et al. Modeling metal-particle interactions with an emphasis on natural organic matter[J]. Environmental Science and Technology, 2006, 40(24): 7459-7466. |
27 | BELLONA C, MARTS M, DREWES J E. The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes[J]. Separation and Purification Technology, 2010, 74(1): 44-54. |
28 | STEINLE-DARLING E, LITWILLER E, REINHARD M. Effects of sorption on the rejection of trace organic contaminants during nanofiltration[J]. Environmental Science and Technology, 2010, 44(7): 2592-2598. |
29 | APPLEMAN T D,Removal and recovery of perfluorooctanoate from wastewater by nanofiltration[J]. Separation and Purification Technology, 2015, 145: 120-129. |
30 | ARCHER A C, MENDES A M, BOAVENTYRA R A B, et al. Separation of an anionic surfactant by nanofiltration[J]. Environmental Science and Technology, 1999, 33(16): 2758-2764. |
31 | HEO J, BOATENG L K, FLORA J R V, et al. Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes[J]. Journal of Membrane Science, 2013, 443: 69-82. |
32 | YOON J, AMY G, CHUNG J, et al. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes[J]. Chemosphere, 2009, 77(2): 228-235. |
33 | TSOUMACHIDOU S, KOURAS A, POULIOS I. Heterogeneous and homogeneous photocatalytic degradation of psychoactive drug Fluvoxamine: kinetic study, inorganic ions and phytotoxicity evaluation[J]. Journal of Chemical Technology and Biotechnology, 2017, 93(6): 1705-1713. |
34 | GIRI R R, OZAKI H, MORIGAKI T, et al. UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution[J]. Water ence & Technology A Journal of the International Association on Water Pollution Research, 2011, 63(2): 276-282. |
35 | GOLE V L, SIERRA-ALVAREZ R, PENG H, et al. Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor[J]. Ultrasonics Sonochemistry, 2018, 45: 213-222. |
36 | HU Y B, LO S L, LI Yueh-Feng, et al. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system[J]. Water Research,2018,140: 148-157. |
37 | LEE Y C, CHEN M J, HUANG C P, et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate[J]. Ultrasonics Sonochemistry, 2016, 31: 499-505. |
38 | XU B, AHMED M B, ZHOU J L, et al. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: mechanism, kinetics and controlling factors[J]. Chemosphere, 2017, 189: 717-729. |
39 | BEHAFARID F, CUENYA B R. Coarsening phenomena of metal nanoparticles and the influence of the support pre-treatment: Pt/TiO2(110)[J]. Surface Science, 2012, 606(11/12): 908-918. |
40 | ABADA B, ALIVIO T E G, SHAO Y, et al. Photodegradation of fluorotelomer carboxylic 5∶3 acid and perfluorooctanoic acid using zinc oxide[J]. Environmental Pollution, 2018, 243: 637-644. |
41 | LU X L, NAJAFZADEH M J, DOLATABADI S, et al. Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 30: 48-56. |
42 | GOMEZ-RUIZ B, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. Journal of Hazardous Materials, 2017: 950-957. |
43 | SONG C, CHEN P, WANG C, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365nm UV irradiation[J]. Chemosphere, 2012, 86(8): 853-859. |
44 | PHAN THI L A, DO H T, LEE Y C, et al. Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation[J]. Chemical Engineering Journal, 2013, 221: 258-263. |
45 | SCHRDER H F, MEESTERS R J W. Stability of fluorinated surfactants in advanced oxidation processes—a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry[J]. Journal of Chromatography A, 2005, 1082(1): 110-119. |
15 | WANG F, SHIH K, LECKIE J O. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite[J]. Chemosphere, 2015, 118: 213-218. |
16 | CHEN X, XIA X, WANG X, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes[J]. Chemosphere, 2011, 83(10): 1313-1319. |
17 | ZHOU Q, DENG S, ZHANG Q, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge[J]. Chemosphere, 2010, 81(4): 453-458. |
18 | GU B, KU Y, BROWN G. Sorption and desorption of perchlorate and U(Ⅵ) by strong-base anion-exchange resins.[J]. Environmental Science and Technology, 2005, 39(3): 901. |
19 | DENG S B, ZHANG Q Y, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes[J]. Environmental Pollution, 2012, 168: 138-144. |
20 | AL-OBAIDI M A, LI J P, KARA-ZATRI C, et al. Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms[J]. Chemical Engineering Journal, 2017, 316: 91-100. |
21 | CORZO B, TERESA D L T, SANS C, et al. Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale[J]. Chemical Engineering Journal, 2017, 326: 1-8. |
22 | LEE S, IHARA M, YAMASHITA N, et al. Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: effect of optimization of pH in secondary effluent[J]. Water Research, 2017,114: 23-30. |
23 | BELLONA C, DREWES J E, XU P, et al. Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review[J]. Water Research, 2004, 38(12): 2795-2809. |
24 | APPLEMAN T D, DICKENSON E R V, BELLONA C, et al. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids[J]. Journal of Hazardous Materials, 2013, 260: 740-746. |
25 | STEINLE-DARLING E, REINHARD M. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluqrochemicals[J]. Environmental Science and Technology, 2008, 42(14): 5292-5297. |
26 | XU P, DREWES J E, KIM T U, et al. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications[J]. Journal of Membrane Science, 2006, 279(1): 165-175. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[9] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[10] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[15] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |