Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 118-131.DOI: 10.16085/j.issn.1000-6613.2022-0159
• Energy processes and technology • Previous Articles Next Articles
WANG Hongxia1,2(), XU Wanyi1,2, ZHANG Zaoxiao1,2()
Received:
2022-01-24
Revised:
2022-04-26
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHANG Zaoxiao
通讯作者:
张早校
作者简介:
王红霞(1992—),女,博士研究生,研究方向为温室气体减排技术。E-mail:whx19930513@163.com。
基金资助:
CLC Number:
WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131.
王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0159
用电方式 | 电价/ CNY·kWh-1 | 制氢成本/CNY·m-3 |
---|---|---|
商业用电 | 0.35 | 1.4~1.75 |
大工业用电 | 0.61 | 2.44~3.05 |
光伏 | 0.5930 | 2.37~2.97 |
用电方式 | 电价/ CNY·kWh-1 | 制氢成本/CNY·m-3 |
---|---|---|
商业用电 | 0.35 | 1.4~1.75 |
大工业用电 | 0.61 | 2.44~3.05 |
光伏 | 0.5930 | 2.37~2.97 |
国家 | 光伏电价/CNY·kWh-1 |
---|---|
中国2021 | 0.59[ |
美国2018 | 0.32[ |
日本2018 | 0.83[ |
印度2021 | 0.40[ |
德国2021 | 0.38[ |
西班牙2021 | 0.83[ |
印尼2019 | 0.72[ |
国家 | 光伏电价/CNY·kWh-1 |
---|---|
中国2021 | 0.59[ |
美国2018 | 0.32[ |
日本2018 | 0.83[ |
印度2021 | 0.40[ |
德国2021 | 0.38[ |
西班牙2021 | 0.83[ |
印尼2019 | 0.72[ |
制氢方式 | 2019年全球制氢成本/CNY·kg-1 | 制氢方式 | 2021年中国制氢成本/CNY·kg-1 |
---|---|---|---|
天然气 | 4.46~10.20 | 煤气化制氢(有/无CCS) | 11~20 |
天然气+CCUS | 7.65~13.39 | 工业副产提氢 | 16 |
煤 | 12.11~15.94 | 蒸汽甲烷重整制氢(有/无CCS) | 18~24 |
煤+CCUS | 13.39~16.58 | 核能制氢 | 20~27 |
低碳电力制氢 | 20.40~49.09 | 网电电解水制氢 | 35~46 |
可再生能源发电电解水制氢 | 28~85 | ||
生物质气化制氢 | 33 |
制氢方式 | 2019年全球制氢成本/CNY·kg-1 | 制氢方式 | 2021年中国制氢成本/CNY·kg-1 |
---|---|---|---|
天然气 | 4.46~10.20 | 煤气化制氢(有/无CCS) | 11~20 |
天然气+CCUS | 7.65~13.39 | 工业副产提氢 | 16 |
煤 | 12.11~15.94 | 蒸汽甲烷重整制氢(有/无CCS) | 18~24 |
煤+CCUS | 13.39~16.58 | 核能制氢 | 20~27 |
低碳电力制氢 | 20.40~49.09 | 网电电解水制氢 | 35~46 |
可再生能源发电电解水制氢 | 28~85 | ||
生物质气化制氢 | 33 |
参数 | 碱性 | PEM |
---|---|---|
太阳能供电/MW | 40 | 40 |
30atm电解系统效率/kWh·(kg H2)-1 | 53.76 | 58.24 |
产氢量/kg H2·h-1 | 595 | 686 |
固定成本投入/104USD | 2658 | 2251 |
寿命/a | 10 | 10 |
参数 | 碱性 | PEM |
---|---|---|
太阳能供电/MW | 40 | 40 |
30atm电解系统效率/kWh·(kg H2)-1 | 53.76 | 58.24 |
产氢量/kg H2·h-1 | 595 | 686 |
固定成本投入/104USD | 2658 | 2251 |
寿命/a | 10 | 10 |
40 | 光伏制氢+耦合煤制百万吨甲醇零碳排放项目签署合作协议[J]. 煤化工, 2020, 48(5): 44. |
41 | 刘金亚, 张华, 雷明镜, 等. 太阳能光伏电解水制氢的实验研究[J]. 可再生能源, 2014, 32(11): 1603-1608. |
LIU Jinya, ZHANG Hua, LEI Mingjing, et al. Experimental study on PV electrolysis of water for production of hydrogen[J]. Renewable Energy Resources, 2014, 32(11): 1603-1608. | |
42 | SONG Yujia, MU Hailin, LI Nan, et al. Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy[J]. International Journal of Hydrogen Energy, 2021, doi: 10.1016/j.ijhydene.2021.08.134 . |
43 | MARQUES F C, SILVA J C M, LIBARDI C P, et al. Hydrogen production by photovoltaic-electrolysis using aqueous waste from ornamental stones industries[J]. Renewable Energy, 2020, 152: 1266-1273. |
44 | DAHBI Sanae, AZIZ Abdelhak, BENAZZI Naima, et al. Optimised hydrogen production by a photovoltaic-Electrolysis system DC/DC converter and water-flow controller[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20858-20866. |
45 | WANG Hongsheng, KONG Hui, PU Zhigang, et al. Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell[J]. Energy Conversion and Management, 2020, 210(3): 112699. |
46 | WANG Mingyong, WANG Zhi, GONG Xuzhong, et al. The intensification technologies to water electrolysis for hydrogen production – A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29: 573-588. |
47 | 四大制氢方式及降成本途径[EB/OL]. [2022-01-16]. . |
48 | 中国经济网. 氢能发展不能背离初衷可再生能源制氢是未来方向[EB/OL]. [2022-01-16]. . |
Hydrogen energy development cannot deviate from the original intention and renewable energy hydrogen production is the future direction[EB/OL]. [2022-01-16]. . | |
49 | IEA, Levelised cost of electricity in the United States, 2040[EB/OL]. IEA, Paris.[2022-01-20]. . |
1 | International Energy Agency. Low-carbon hydrogen production, 2010—2030, historical, announced and in the Sustainable Development Scenario,2030[EB/OL]. [2021-11-04]. . |
2 | ABAD A V, DODDS P E. Green hydrogen characterisation initiatives: definitions, standards, guarantees of origin, and challenges[J]. Energy Policy, 2020, 138: 111300. |
3 | BELLABY Paul, FLYNN Rob, RICCI Miriam. Rapidly diffusing innovation: whether the history of the Internet points the way for hydrogen energy[J]. Innovation: The European Journal of Social Science Research, 2012, 25(3): 322-336. |
4 | CLARK W W. Partnerships in creating agile sustainable development communities[J]. Journal of Cleaner Production, 2007, 15(3): 294-302. |
5 | ZAINZINGER Vanessa. Making green hydrogen work[J]. C&EN Global Enterprise, 2020, 98(23): 20-22. |
6 | REISCH Marc. The coming challenge of green hydrogen[J]. C&EN Global Enterprise, 2020, 98(2): 28. |
7 | HOWARTH R W, JACOBSON M Z. How green is blue hydrogen? [J]. Energy Science & Engineering, 2021, 9: 1676-1687. |
8 | BloombergNEF. ‘Green’ Hydrogen to Outcompete ‘Blue’ Everywhere by 2030[EB/OL]. [2021-11-04]. . |
9 | 国家能源局. 百年能源薪火相传[EB/OL]. [2021-11-04]. . |
National Energy Administration. Hundred years of energy success[EB/OL]. [2021-11-04]. . | |
10 | International Energy Agency. Renewable electricity net capacity additions by technology, main and accelerated cases, 2013—2022, IEA, Paris[EB/OL]. [2021-11-04]. . |
11 | International Energy Agency. Renewable electricity net capacity additions by country/region, main case, 2019—2022, IEA, Paris[EB/OL]. [2021-11-04]. . |
50 | IEA, Levelised cost of electricity in Japan, 2040[EB/OL]. IEA, Paris.[2022-01-20]. . |
51 | IEA, Levelised cost of electricity LCOE for solar PV and coal-fired power plants in India in the New Policies Scenario, 2020-2040[EB/OL]. IEA, Paris.[2022-01-20]. |
52 | IEA, Average wholesale electricity prices in Germany, United Kingdom and Spain, 2019-2021[EB/OL]. IEA, Paris.[2022-01-20]. . |
53 | IEA, Average levelised cost of electricity for new utility-scale solar PV commissioned in Indonesia, 2019 versus benchmark[EB/OL]. IEA, Paris.[2022-01-20]. . |
54 | 水力能地热能制氢[EB/OL]. [2021-11-04]. . |
Hydrogen and geothermal hydrogen production[EB/OL]. [2021-11-04]. . | |
55 | 杨阳, 王孝群, 练冲, 等. 径流式水电站弃能利用的制氢系统优化研究[J]. 水力发电学报, 2021, 40(6): 21-30. |
YANG Yang, WANG Xiaoqun, LIAN Chong, et al. Optimization of hydrogen production systems for energy curtailment utilization at Run-of-river hydropower stations[J]. Journal of Hydroelectric Engineering, 2021, 40(6): 21-30. | |
56 | Hydrospider plans first Swiss commercial hydrogen production[J]. Fuel Cells Bull, 2019, 8: 9. |
57 | H2 Energy AG. The first electrolyzer plant in Switzerland generating hydrogen from renewable power at the run-of-the-river plant in Aarau[EB/OL]. . |
58 | Renewable Energy World. Landsvirkjun to build hydrogen production facility at 16-MW Ljosifoss hydropower[EB/OL]. [2021-11-04]. . |
59 | JOVAN D J, DOLANC G, PREGELJ B. Cogeneration of green hydrogen in a cascade hydropower plant[J]. Energy Conversion and Management X, 2021, 10(12): 100081. |
12 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
13 | LUND Henrik. Large-scale integration of wind power into different energy systems[J]. Energy, 2005, 30(13): 2402-2412. |
14 | LUND H, MATHIESEN BV. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050[J]. Energy, 2009, 34(5): 524-5314. |
15 | International Energy Agency. Renewable energy market update 2021[EB/OL]. [2021-11-04]. . |
16 | PATRICIO R A, SALES A D, SACRAMENTO E M, et al. Wind hydrogen energy system and the gradual replacement of natural gas in the State of Ceara-Brazil[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7355-64. |
17 | 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. |
CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. | |
18 | 蒋东方, 高丹, 武珍, 等. 基于智能微网的氢氧联合循环与风能耦合发电系统[J]. 电力科学与工程, 2011, 27(6): 1-5. |
JIANG Dongfang, GAO Dan, WU Zhen, et al. Hydrogen and oxygen combined cycle coupled with the wind power generation system based on the microgrid technology[J]. Electric Power Science and Engineering, 2011, 27(6): 1-5. | |
19 | 张丽, 陈硕翼. 风电制氢技术国内外发展现状及对策建议[J]. 科技中国, 2020(1): 13-16. |
20 | SEDAGHAT Ahmad, MOSTAFAEIPOUR Ali, REZAEI Mostafa, et al. A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(32): 15888-903. |
21 | GIELEN Dolf. Global Energy Transformation: a roadmap to 2050[R]. 2018. |
60 | VALENTE Antonio, IRIBARREN Diego, DUFOUR Javier, et al. Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16660-16672. |
61 | POSSO F, ESPINOZA J L, SANCHEZ J, et al. Hydrogen from hydropower in Ecuador: use and impacts in the transport sector[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15432-15447. |
62 | OLATEJU Babatunde, KUMAR Amit. A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands[J]. Energy, 2016, 115(10): 604-614. |
63 | KAUW M, BENDERS R M J, VISSER C. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany[J]. Energy, 2015, 90(1): 208-217. |
64 | 国家能源局. 清洁低碳, 能源结构这样转型[R]. [2021-11-04]. http: //www.nea.gov.cn/2021-04/09/c_139869431.htm2021. |
National Energy Administration. Clean and low-carbon, the energy structure is transformed like this[R]. [2021-11-04]. http: //www.nea.gov.cn/2021-04/09/c_139869431.htm2021. | |
65 | 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源, 2017, 22(8): 25-32. |
LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8): 25-32. | |
66 | IEA, Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050[EB/OL]. IEA, Paris.[2022-01-16]. . |
67 | 中国煤炭期刊网. 中国不同制氢方式的成本[EB/OL]. [2022-01-14]. . |
China coal industry knowledge services platform. Cost of different hydrogen production methods in China[EB/OL]. [2022-01-14]. . | |
68 | 郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 688-695. |
22 | 方世杰, 邵志芳, 张存满. 并网型风电耦合制氢系统经济性分析[J]. 能源技术经济, 2012, 24(3): 39-43. |
FANG Shijie, SHAO Zhifang, ZHANG Cunman. Economic analysis on on-grid wind power coupling with hydrogen-production system[J]. Energy Technology and Economics, 2012, 24(3): 39-43. | |
23 | 温源. 风电制氢能量管理系统控制方法研究[D]. 北京: 华北电力大学(北京), 2019. |
WEN Yuan. Research on control strategy of energy management system of wind power and hydrogen[D]. Beijing: North China Electric Power University, 2019. | |
24 | 肖宇. 氢储能: 支撑起智能电网和可再生能源发电规模化[J]. 中国战略新兴产业, 2016(1): 46-49. |
25 | NADALETI C N, SANTOS G B, LOURENO V A. Integration of renewable energies using the surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio Grande do Sul state: Energy planning and avoided emissions within a circular economy[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24190-24202. |
26 | AZCARATE Cristina, BLANCO Rosa, MALLOR Fermín, et al. Peaking strategies for the management of wind-H2 energy systems[J]. Renewable Energy, 2012, 47: 103-111. |
27 | SUN Jie, WANG Ruilin, HONG Hui, et al. An optimized tracking strategy for small-scale double-axis parabolic trough collector[J]. Applied Thermal Engineering, 2017, 112: 1408-1420. |
28 | GUO Shaopeng, LIU Qibin, SUN Jie, et al. A review on the utilization of hybrid renewable energy[J]. Renewable & Sustainable Energy Reviews, 2018, 91: 1121-1147. |
29 | XU Haojie, LI Yinshi, SUN Jie, et al. Transient model and characteristics of parabolic-trough solar collectors: molten salt vs. synthetic oil[J]. Solar Energy, 2019, 182: 182-193. |
30 | PAL P, MUKHERJEE V. Off-grid solar photovoltaic/hydrogen fuel cell system for renewable energy generation: an investigation based on techno-economic feasibility assessment for the application of end-user load demand in North-East India[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111421. |
31 | 中国测试.光伏制氢: 能源领域的新一轮变革[EB/OL]. [2022-01-05]. . |
68 | GUO Xiuying, LI Xianming, XU Zhuang, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 688-695. |
69 | FAN Jingli, YU Pengwei, LI Kai, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
70 | MAGGIO G, SQUADRITO G, NICITA A. Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route[J]. Applied Energy, 2022, 306(A): 117993. |
71 | ZAIK K, WERLE S, NICITA A. Solar and wind energy in Poland as power sources for electrolysis process - A review of studies and experimental methodology[J]. International Journal of Hydrogen Energy, 2022: doi: 10.1016/j.ijhydene.2022.02.074 . |
72 | HENZE Veronika. Bloomberg Philanthropies Announces New Partnership with International Solar Alliance to Mobilize $1 Trillion in Solar Financing. BloombergNEF[EB/OL]. [2021-11-04]. . |
73 | BNEF: 投资的飙升,2021年全球光伏装机上限提至194GW[EB/OL]. [2021-11-04]. . |
BNEF: With the surge in investment, the global PV installed capacity cap will be raised to 194GW in 2021[EB/OL]. [2021-11-04]. | |
74 | CALLENS Jef. The role of carbon capture and storage in getting to net-zero by mid-century: New Energy Outlook 2021[EB/OL]. [2021-11-04]. . |
75 | 黄格省, 阎捷, 师晓玉, 等. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用, 2019, 37(5): 289-296. |
HUANG Gesheng, YAN Jie, SHI Xiaoyu, et al. Development status and prospect analysis of hydrogen production with new energy technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296. | |
31 | China Measurement & Test. Photovoltaic hydrogen production: A new round of reform in the field of energy[EB/OL]. [2022-01-05]. . |
32 | AKYUZ E, COSKUN C, OKTAY Z, et al. Hydrogen production probability distributions for a PV-electrolyser system[J]. International Journal of Hydrogen Energy, 2011, 36(17): 11292-11299. |
33 | CLARKE R E, GIDDEY S, BADWAL S P S. Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source[J]. International Journal of Hydrogen Energy, 2010, 35(3): 928-935. |
34 | LIU Zhixiang, QIU Zhanmou, LUO Yao, et al. Operation of first solar-hydrogen system in China[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2762-2766. |
35 | 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化[J]. 新能源进展, 2019, 7(3): 287-294. |
GUO Changqing, YI Liqi, YAN Changfeng, et al. Optimization of photovoltaic-PEM electrolyzer direct coupling systems[J]. Advances in New and Renewable Energy, 2019, 7(3): 287-294. | |
36 | SIDDIQUI Osamah, DINCER Ibrahim. Optimization of a new renewable energy system for producing electricity, hydrogen and ammonia[J]. Sustainable Energy Technologies and Assessments, 2021, 44(34): 101023. |
37 | YANG Gan, ZHAI Xiaoqiang. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies[J]. Applied Thermal Engineering, 2018, 133: 327-340. |
38 | KOJIMA Hirokazu, MATSUDA Tomoki, KANO Kazuki, et al. Methylcyclohexane production under fluctuating hydrogen flow rate conditions[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9433-9442. |
39 | KIKUCHI Yasunori, ICHIKAWA Takayuki, SUGIYAMA Masakazu, et al. Battery-assisted low-cost hydrogen production from solar energy: Rational target setting for future technology systems[J]. International journal of hydrogen energy, 2019, 44(3): 1451-1465. |
[1] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[2] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[3] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[4] | ZHANG Dong, LIU Pengfei, LIU Chunyang, HOU Gang, HUI Bo, AN Zhoujian. Performance analysis of solar PV/T photovoltaic energy storage direct drive CHP system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2895-2903. |
[5] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[6] | DU Tao, MA Jinwei, CHEN Qianqian, FANG Hao, CHEN Bingzhang, CHEN Houren. Comparison test and numerical simulation analysis of PV/T module composite cooling mode [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 722-730. |
[7] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[8] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[9] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[10] | HUANG Gesheng, SHI Xiaoyu, DING Wenjuan, WANG Chunjiao, MU Yanjun, HOU Yuxuan. Development status and prospect analysis of photovoltaic cell packaging adhesive film materials [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5037-5046. |
[11] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
[12] | BAI Haoliang, WANG Chen, LU Jing, KANG Xue. Solar cell heat dissipation technology and development status of concentrating photovoltaic system [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 159-177. |
[13] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[14] | YANG Zheng, XIE Yongli, YANG Guangyao, ZHANG Lizhong, LIU Yunxiang. Application analysis of direct cooling exhaust air heat pump system in Xiaobaodang coal mine [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 643-647. |
[15] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |