Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 5029-5036.DOI: 10.16085/j.issn.1000-6613.2021-2429
• Resources and environmental engineering • Previous Articles Next Articles
XU Lijie1(), LIU Haojie1, XUE Rui1, ZHOU Xiaoli1, ZHOU Jie1,2, QIAN Xiujuan1(), DONG Weiliang1,2(), JIANG Min1,2
Received:
2021-11-25
Revised:
2022-03-01
Online:
2022-09-27
Published:
2022-09-25
Contact:
QIAN Xiujuan, DONG Weiliang
徐丽洁1(), 刘豪杰1, 薛瑞1, 周小力1, 周杰1,2, 钱秀娟1(), 董维亮1,2(), 姜岷1,2
通讯作者:
钱秀娟,董维亮
作者简介:
徐丽洁(1997—),女,硕士研究生,研究方向为废弃塑料生物高值转化。E-mail:201961218106@njtech.edu.cn。
基金资助:
CLC Number:
XU Lijie, LIU Haojie, XUE Rui, ZHOU Xiaoli, ZHOU Jie, QIAN Xiujuan, DONG Weiliang, JIANG Min. Interdisciplinary assistance for biological recycling of waste plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5029-5036.
徐丽洁, 刘豪杰, 薛瑞, 周小力, 周杰, 钱秀娟, 董维亮, 姜岷. 多学科交叉助力废塑料生物法循环回收利用[J]. 化工进展, 2022, 41(9): 5029-5036.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2429
29 | VARJANI S J, GNANSOUNOU E, PANDEY A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms[J]. Chemosphere, 2017, 188: 280-291. |
30 | DANSO D, SCHMEISSER C, CHOW J, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8): e02773. |
31 | WALLACE P W, HAERNVALL K, RIBITSCH D, et al. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes [J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2291-2303. |
32 | 李秀, 杨海涛, 王泽方. 聚对苯二甲酸乙二醇酯降解酶的研究进展[J]. 微生物学报, 2019, 59(12): 2251-2262. |
LI Xiu, YANG Haitao, WANG Zefang. Advance in polyethylene terephthalate degrading enzyme[J]. Acta Microbiologica Sinica, 2019, 59(12): 2251-2262. | |
33 | LEITAO A L, ENGUITA F J. Structural insights into carboxylic polyester-degrading enzymes and their functional depolymerizing neighbors[J]. International Journal of Molecular Sciences, 2021, 22(5): 2332. |
34 | SON H F, JOO S, SEO H, et al. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis [J]. Enzyme and Microbial Technology, 2020, 141: 109656. |
35 | TOURNIER V, TOPHAM C M, GILLES A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580: 216-219. |
36 | JOO S, CHO I J, SEO H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1): 382. |
37 | 孟祥熙. 基于自然进化提升IsPETase稳定性以及塑料降解效率的研究[D]. 北京: 中国农业科学院, 2021. |
MENG Xiangxi. Study on the natural evolutionary protein engineering of stable IsPETase for PET plastic degradation[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021. | |
38 | ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3): 403-410. |
1 | GANESH K A, ANJANA K, HINDUJA M, et al. Review on plastic wastes in marine environment—Biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733. |
2 | BAHL S, DOLMA J, SINGH J J, et al. Biodegradation of plastics: a state of the art review[J]. Materials Today: Proceedings, 2021, 39: 31-34. |
3 | VOLLMER I, JENKS M J, ROELANDS M C, et al. Beyond mechanical recycling: giving new life to plastic waste[J]. Angewandte Chemie International Edition, 2020, 59(36): 15402-15423. |
4 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
5 | RAGAERT K, DELVA L, GEEM K V, et al. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017, 69: 24-58. |
6 | ZHANG F, ZHAO Y, WANG D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021, 282: 124523. |
7 | ASHWORTH D C, ELLIOTT P, TOLEDANO M B. Waste incineration and adverse birth and neonatal outcomes: a systematic review[J]. Environment international, 2014, 69: 120-132. |
8 | MOHARIR R V, KUMAR S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review[J]. Journal of Cleaner Production, 2019, 208: 65-76. |
9 | ALI S S, ELSAMAHY T, AL-TOHAMY R, et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects[J]. Science of the Total Environment, 2021, 780: 146590. |
10 | NIKOLAIVITS E, PANTELIC B, AZEEM M, et al. Progressing plastics circularity: a review of mechano-biocatalytic approaches for waste plastic (re)valorization[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 696040. |
11 | 李昕玥, 刘卓苗, 薛润泽, 等. 典型塑料的生物降解及其降解机理[J]. 科学通报, 2021, 66(20): 2573-2589. |
LI Xinyue, LIU Zhuomiao, XUE Runze, et al. Biodegradation of typical plastics and its mechanisms[J]. Science Bulletin, 2021, 66(20): 2573-2589. | |
39 | CHEN C C, DAI L, MA L, et al. Enzymatic degradation of plant biomass and synthetic polymers[J]. Nature Reviews Chemistry, 2020, 4: 114-126. |
40 | DELRE C, JIANG Y, KANG P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes[J]. Nature, 2021, 592: 558-563. |
12 | RAVISHANKAR K, RAMESH P S, SADHASIVAM B, et al. Wear-induced mechanical degradation of plastics by low-energy wet-grinding[J]. Polymer Degradation and Stability, 2018, 158: 212-219. |
13 | GAMERITH C, ZARTL B, PELLIS A, et al. Enzymatic recovery of polyester building blocks from polymer blends[J]. Process Biochemistry, 2017, 59: 58-64. |
14 | WEI R, ZIMMERMANN W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?[J]. Microbial Biotechnology, 2017, 10(6): 1308-1322. |
15 | WEI R, TISO T, BERTLING J, et al. Possibilities and limitations of biotechnological plastic degradation and recycling[J]. Nature Catalysis, 2020, 3: 867–871. |
16 | INDERTHAL H, TAI S L, HARRISON S. Non-hydrolyzable plastics—An interdisciplinary look at plastic bio-oxidation[J]. Trends in Biotechnology, 2021, 39(1): 12-23. |
17 | ZIMMERMANN K. Microwave as an emerging technology for the treatment of biohazardous waste: a mini-review[J]. Waste Management & Research, 2017, 35(5): 471-479. |
18 | 刘友林. 微波消毒灭菌技术应用于医院制剂的可行性[J]. 医药产业资讯, 2006, 3(9): 37-38. |
LIU Youlin. Feasibility of microwave disinfection and sterilization technology applied to hospital preparations[J]. Medicine Industry Information, 2006, 3(9): 37-38. | |
19 | ZHOU B W, SHIN S G, HWANG K H, et al. Effect of microwave irradiation on cellular disintegration of gram positive and negative cells[J]. Applied Microbiology and Biotechnology, 2010, 87(2): 765-770. |
20 | 陈欢, 万坤, 牛波, 等. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469. |
CHEN Huan, WAN Kun, NIU Bo, et al. Recent progresses in chemical recycling and upcycling of waste plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469. | |
21 | 康菡子, 袁璐璇, 王彦博, 等. 废旧PET聚酯回收利用进展[J]. 塑料, 2021, 55(5): 61-66. |
KANG Hanzi, YUAN Luxuan, WANG Yanbo, et al. Research progress of waste PET recycling[J]. Plastics, 2021, 55(5): 61-66. | |
22 | FRANDEN M A, JAYAKODY L N, LI W J, et al. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization[J]. Metabolic Engineering, 2018,48: 197-207. |
23 | KENNY S T, RUNIC J N, KAMINSKY W, et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate[J]. Applied Microbiology and Biotechnology, 2012, 95(3): 623-633. |
24 | 罗中, 程瑾. 废PET聚酯化学解聚及应用研究进展[J]. 精细石油化工, 2021, 38(1): 72-78. |
LUO Zhong, CHENG Jin. Research progress in chemical depolymerization and application of waste PET polyester[J]. Speciality Petrochemicals, 2021, 38(1): 72-78. | |
25 | ZHANG F, ZENG M, YAPPERT R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370: 437-441. |
26 | TENNAKOON A, WU X, PATERSON A L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901. |
27 | DONG L, XIA J, GUO Y, et al. Mechanisms of Caromatic—C bonds cleavage in lignin over NbO x -supported Ru catalyst[J]. Journal of Catalysis, 2021, 394: 94-103. |
28 | BURANGE A S, GAWANDE M B, LAM F L Y, et al. Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels[J]. Green Chemistry, 2015, 17(1): 146-156. |
[1] | LIU Yang, WANG Yungang, XIU Haoran, ZOU Li, BAI Yanyuan. Optimal carbonization process of walnut shell based on dynamic analysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 94-103. |
[2] | PAN Sirui, DENG Wenyi, SU Yaxin. Verification and application of circuit probe method for measuring the liquid film thickness of sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5538-5547. |
[3] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[4] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[5] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[6] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[7] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[8] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[9] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
[10] | CHANG Zhankun, ZHANG Chi, SU Bingqin, ZHANG Congzheng, WANG Jian, QUAN Xiaohui. Effect of H2S gaseous substrate on sludge bioleaching treatment efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2733-2743. |
[11] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[12] | ZHAO Jiaqi, HUANG Yaji, LI Zhiyuan, DING Xueyu, QI Shuaijie, ZHANG Yuyao, LIU Jun, GAO Jiawei. Characteristics of three-phase products from co-pyrolysis of sewage sludge and PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2122-2129. |
[13] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[14] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[15] | FAN Siqiang, PENG Shaozhong, PENG Chong, HU Yongkang. Research progress in high value-added utilization technology of waste plastics [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1020-1027. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |