Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4954-4962.DOI: 10.16085/j.issn.1000-6613.2022-0462
• Materials science and technology • Previous Articles Next Articles
FANG Longlong1(), ZHENG Wenji1, NING Mengjia2,3, ZHANG Mingyang1, YANG Yuqing1, DAI Yan2,3(), HE Gaohong1,2()
Received:
2022-03-24
Revised:
2022-04-28
Online:
2022-09-27
Published:
2022-09-25
Contact:
DAI Yan, HE Gaohong
方龙龙1(), 郑文姬1, 宁梦佳2,3, 张明扬1, 杨雨晴1, 代岩2,3(), 贺高红1,2()
通讯作者:
代岩,贺高红
作者简介:
方龙龙(1996—),男,硕士研究生,研究方向为气体分离膜。E-mail:fll@mail.dlut.edu.cn。
基金资助:
CLC Number:
FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962.
方龙龙, 郑文姬, 宁梦佳, 张明扬, 杨雨晴, 代岩, 贺高红. 功能化Zr-MOF强化混合基质膜CO2分离[J]. 化工进展, 2022, 41(9): 4954-4962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0462
膜(Pebax基) | CO2/N2选择性 | 压力/bar | 参考文献 | |
---|---|---|---|---|
GO | 108 | 48.5 | 7 | [ |
MWNTs-NH2 | 298 | 52 | 7 | [ |
ZnO@ZIF-8HNTs | 140 | 67 | 7 | [ |
NH2-MIL-53(Al) | 149 | 55.5 | 10 | [ |
ZIF-8@GO | 136.2 | 77.9 | 3 | [ |
原始Pebax | 89.5 | 81.3 | 8 | 本工作 |
UiO-66-NH2-6% | 91.0 | 86.2 | 8 | 本工作 |
UiO-66-AC-6% | 102.4 | 90.6 | 8 | 本工作 |
膜(Pebax基) | CO2/N2选择性 | 压力/bar | 参考文献 | |
---|---|---|---|---|
GO | 108 | 48.5 | 7 | [ |
MWNTs-NH2 | 298 | 52 | 7 | [ |
ZnO@ZIF-8HNTs | 140 | 67 | 7 | [ |
NH2-MIL-53(Al) | 149 | 55.5 | 10 | [ |
ZIF-8@GO | 136.2 | 77.9 | 3 | [ |
原始Pebax | 89.5 | 81.3 | 8 | 本工作 |
UiO-66-NH2-6% | 91.0 | 86.2 | 8 | 本工作 |
UiO-66-AC-6% | 102.4 | 90.6 | 8 | 本工作 |
1 | WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
2 | DU Naiying, PARK Ho Bum, DAL-CIN Mauro M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy & Environmental Science, 2012, 5(6): 7306-7322. |
3 | KIM Seungju, LEE Young Moo. Rigid and microporous polymers for gas separation membranes[J]. Progress in Polymer Science, 2015, 43: 1-32. |
4 | CHENG Youdong, YING Yunpan, JAPIP Susilo, et al. Advanced porous materials in mixed matrix membranes[J]. Advanced Materials, 2018, 30(47): 1802401. |
5 | 陈丙晨, 徐积斌, 万超, 等. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524. |
CHEN Bingchen, XU Jibin, WAN Chao, et al. ZIF-8 filled carboxylated polymer of intrinsic microporosity membranes for CO2/CH4 separation[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3518-3524. | |
6 | BAKER Richard W, KAAEID Lokhandwala. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
7 | BERNARDO P, DRIOLI E, GOLEMME G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
8 | 陈艺飞, 王佳铭, 阮雪华, 等. 聚离子液体二氧化碳分离膜材料的研究进展[J]. 化工学报, 2021, 72(12): 6062-6072. |
CHEN Yifei, WANG Jiaming, RUAN Xuehua, et al. Research progress in poly(ionic liquids) materials for CO2 membrane separation[J]. CIESC Journal, 2021, 72(12): 6062-6072. | |
9 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
10 | CARTA Mariolino, Richard MALPASS-EVANS, CROAD Matthew, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. |
11 | PARK Ho Bum, KAMCEV Jovan, ROBESON Lloyd M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
12 | EBADI AMOOGHIN Abtin, MASHHADIKHAN Samaneh, SANAEEPUR Hamidreza, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102: 222-295. |
13 | DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
14 | 洪宗平, 叶楚梅, 吴洪, 等. 天然气脱碳技术研究进展[J]. 化工学报, 2021, 72(12): 6030-6048. |
HONG Zongping, YE Chumei, WU Hong, et al. Research progress in CO2 removal technology of natural gas[J]. CIESC Journal, 2021, 72(12): 6030-6048. | |
15 | 侯蒙杰, 张新儒, 王永洪, 等. 聚乙烯胺/埃洛石纳米管混合基质膜的制备及其CO2/N2分离[J]. 化工学报, 2018, 69(9): 4106-4113. |
HOU Mengjie, ZHANG Xinru, WANG Yonghong, et al. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation[J]. CIESC Journal, 2018, 69(9): 4106-4113. | |
16 | Aleksandra WOLIŃSKA-GRABCZYK, Magdalena WÓJTOWICZ, JANKOWSKI Andrzej, et al. Synthesis, characterization, and gas permeation properties of thermally rearranged poly(hydroxyimide)s filled with mesoporous MCM-41 silica[J]. Polymer, 2018, 158: 32-45. |
17 | Klaudia NOCOŃ-SZMAJDA, Aleksandra WOLIŃSKA-GRABCZYK, JANKOWSKI Andrzej, et al. Gas transport properties of mixed matrix membranes based on thermally rearranged poly(hydroxyimide)s filled with inorganic porous particles[J]. Separation and Purification Technology, 2020, 242: 116778. |
18 | KIM Seungju, HOU Jue, WANG Yuqi, et al. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7668-7674. |
19 | YANG Kai, DAI Yan, ZHENG Wenji, et al. ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf[J]. Separation and Purification Technology, 2019, 214: 87-94. |
20 | ZHENG Wenji, DING Rui, YANG Kai, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119. |
21 | DING Rui, DAI Yan, ZHENG Wenji, et al. Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway[J]. Chemical Engineering Journal, 2021, 414: 128807. |
22 | 杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336. |
YANG Kai, RUAN Xuehua, DAI Yan, et al. Optimized fabrication of mixed matrix membranes based on amino-MIL-101(Cr) for highly efficient CO2 separation[J]. CIESC Journal, 2020, 71(1): 329-336. | |
23 | CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
24 | KATZ Michael J, BROWN Zachary J, COLÓN Yamil J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451. |
25 | JIANG Xu, LI Songwei, HE Shanshan, et al. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6(31): 15064-15073. |
26 | AHMAD Mohd Zamidi, NAVARRO Marta, LHOTKA Miloslav, et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives[J]. Journal of Membrane Science, 2018, 558: 64-77. |
27 | VENNA Surendar R, LARTEY Michael, LI Tao, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. Journal of Materials Chemistry A, 2015, 3(9): 5014-5022. |
28 | YANG Xiaochen, ZHENG Wenji, XI Yuan, et al. Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2021, 624: 119046. |
29 | WANG He, ZHENG Wenji, YANG Xiaochen, et al. Pebax-based mixed matrix membranes derived from microporous carbon nanospheres for permeable and selective CO2 separation[J]. Separation and Purification Technology, 2021, 274: 119015. |
30 | WANG Zhenggong, REN Huiting, ZHANG Shenxiang, et al. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation[J]. Journal of Materials Chemistry A, 2017, 5(22): 10968-10977. |
31 | Nguyen TIEN-BINH, RODRIGUE Denis, KALIAGUINE Serge. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
32 | GHASEMI ESTAHBANATI Ehsan, OMIDKHAH Mohammadreza, EBADI AMOOGHIN Abtin. Interfacial design of ternary mixed matrix membranes containing pebax 1657/silver-nanopowder/[BMIM][BF 4] for improved CO2 separation performance[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 10094-10105. |
33 | 宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659. |
NING Mengjia, DAI Yan, XI Yuan, et al. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659. | |
34 | SANAEEPUR Hamidreza, AHMADI Reyhane, EBADI AMOOGHIN Abtin, et al. A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 234-246. |
35 | Nguyen TIEN-BINH, Hoang VINH-THANG, CHEN Xiao yuan, et al. Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation[J]. Journal of Materials Chemistry A, 2015, 3(29): 15202-15213. |
36 | CHENG Youdong, ZHAI Linzhi, YING Yunpan, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9): 4549-4560. |
37 | XIAO Youchang, Bee Ting LOW, HOSSEINI Seyed Saeid, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
38 | ZHANG Lingling, DAI Fangfang, YI Ruobing, et al. Effect of physical and chemical structures of graphene oxide on water permeation in graphene oxide membranes[J]. Applied Surface Science, 2020, 520: 146308. |
39 | ZHAO Dan, REN Jizhong, LI Hui, et al. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes[J]. Journal of Membrane Science, 2014, 467: 41-47. |
40 | WANG Qiuchen, DAI Yan, RUAN Xuehua, et al. ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation[J]. Journal of Membrane Science, 2021, 630: 119323. |
41 | MESHKAT Shadi, KALIAGUINE Serge, RODRIGUE Denis. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190. |
42 | YANG KAI, DAI YAN, RUAN XUEHUA, et al. Stretched ZIF-8@GO flake-like fillers via pre-Zn(Ⅱ)-doping strategy to enhance CO2 permeation in mixed matrix membranes[J]. Journal of Membrane Science, 2020, 601: 117934. |
[1] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[2] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[5] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[6] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[7] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[8] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[9] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[10] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[11] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[12] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[13] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[14] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[15] | SHANG Yu, XIAO Man, CUI Qiufang, TU Te, YAN Shuiping. Recovery characteristics of PVDF/BN-OH flat composite membrane for waste heat of hot stripped gas in CO2 capture process [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1618-1628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |