Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (9): 4767-4781.DOI: 10.16085/j.issn.1000-6613.2021-2414
• Industrial catalysis • Previous Articles Next Articles
CHEN Zhiping1,2,3(), SHI Faxiang1, ZHOU Wenwu1,2,3(), YANG Zhiyuan1,2,3, ZHOU Anning1,2,3
Received:
2021-11-24
Revised:
2022-01-19
Online:
2022-09-27
Published:
2022-09-25
Contact:
ZHOU Wenwu
陈治平1,2,3(), 石发翔1, 周文武1,2,3(), 杨志远1,2,3, 周安宁1,2,3
通讯作者:
周文武
作者简介:
陈治平(1982—),男,博士,硕士生导师,研究方向为多孔材料与催化反应工程。E-mail:cupczp@163.com。
基金资助:
CLC Number:
CHEN Zhiping, SHI Faxiang, ZHOU Wenwu, YANG Zhiyuan, ZHOU Anning. Study on SAPO-11 molecular sieve catalyst with small particle size and hierarchical pores for isomerization of hydrocarbons[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4767-4781.
陈治平, 石发翔, 周文武, 杨志远, 周安宁. 烃类异构化小粒径、多级孔SAPO-11分子筛催化剂研究进展[J]. 化工进展, 2022, 41(9): 4767-4781.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2414
项目 | Pt/H-SAPO-11 | Pt/H-SAPO-11-H1 |
---|---|---|
K①/10-6mol·g-1·s-1 | 5.1 | 33.2 |
TOF②/10-2 s-1 | 5.5 | 17.5 |
SMB③/% | 86.1 | 74.0 |
SDB③/% | 2.4 | 23.9 |
i-C4/n-C4 | 0.58 | 1.5 |
i-C5/n-C5 | 0.51 | 1.1 |
(C3+C5)/2C4 | 0.7 | 0.68 |
PS③/% | ||
2-MC7 | 40.6 | 30.0 |
3-MC7 | 36.8 | 36.1 |
4-MC7 | 8.7 | 7.9 |
2,2-DMC6 | 0.0 | 1.5 |
2,3-DMC6 | 0.2 | 2.6 |
2,4-DMC6 | 0.6 | 9.5 |
2,5-DMC6 | 1.6 | 10.3 |
裂化产物 | 11.5 | 2.1 |
项目 | Pt/H-SAPO-11 | Pt/H-SAPO-11-H1 |
---|---|---|
K①/10-6mol·g-1·s-1 | 5.1 | 33.2 |
TOF②/10-2 s-1 | 5.5 | 17.5 |
SMB③/% | 86.1 | 74.0 |
SDB③/% | 2.4 | 23.9 |
i-C4/n-C4 | 0.58 | 1.5 |
i-C5/n-C5 | 0.51 | 1.1 |
(C3+C5)/2C4 | 0.7 | 0.68 |
PS③/% | ||
2-MC7 | 40.6 | 30.0 |
3-MC7 | 36.8 | 36.1 |
4-MC7 | 8.7 | 7.9 |
2,2-DMC6 | 0.0 | 1.5 |
2,3-DMC6 | 0.2 | 2.6 |
2,4-DMC6 | 0.6 | 9.5 |
2,5-DMC6 | 1.6 | 10.3 |
裂化产物 | 11.5 | 2.1 |
项目 | Pt/C-SAPO-11-200 | Pt/T-SAPO-11-120 |
---|---|---|
DPt/% | 36.8 | 45.7 |
dPt/nm | 3.07 | 2.47 |
转化率/% | 64.3 | 75.7 |
iso-C7选择性/% | 97.0 | 95.1 |
iso-C7产率/% | 62.4 | 72.0 |
MB①产率/% | 61.1 | 68.9 |
DB②产率/% | 1.32 | 2.98 |
裂化产率③/% | 1.73 | 3.01 |
项目 | Pt/C-SAPO-11-200 | Pt/T-SAPO-11-120 |
---|---|---|
DPt/% | 36.8 | 45.7 |
dPt/nm | 3.07 | 2.47 |
转化率/% | 64.3 | 75.7 |
iso-C7选择性/% | 97.0 | 95.1 |
iso-C7产率/% | 62.4 | 72.0 |
MB①产率/% | 61.1 | 68.9 |
DB②产率/% | 1.32 | 2.98 |
裂化产率③/% | 1.73 | 3.01 |
1 | WANG Y, LIU W, ZHANG W, et al. Comparison of n-dodecane hydroisomerization performance over Pt supported ZSM-48 and ZSM-22[J]. Catalysis Letters, 2021, 151(12): 3492-3500. |
2 | CHEN Z, LIU L, SHI F, et al. Hydroisomerization with a hierarchical SAPO-11 supported Ni catalyst: effect of DTAB content[J]. ChemistrySelect, 2021, 6(42): 11528-11536. |
3 | ZHAO X, LIU W, WANG J, et al. Interface mediated crystallization of plate-like SAPO-41 crystals to promote catalytic hydroisomerization[J]. Applied Catalysis A: General, 2020, 602: 117738. |
4 | GLOTOV A, VUTOLKINA A, ARTEMOVA M, et al. Micro-mesoporous MCM-41/ZSM-5 supported Pt and Pd catalysts for hydroisomerization of C8 aromatic fraction[J]. Applied Catalysis A: General, 2020, 603: 117764. |
5 | ZHANG Y, LIU D, LOU B, et al. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: effects of the MCM-41 incorporation with Y zeolite[J]. Fuel, 2018, 226: 204-212. |
6 | IBRAHIM M, JALIL A A, ZAKARIA W F W, et al. n-Hexane hydroisomerization over Zr-modified bicontinuous lamellar silica mordenite supported Pt as highly selective catalyst: molecular hydrogen generated protonic acid sites and optimization[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4019-4035. |
7 | FEDYNA M, ŚLIWA M, JAROSZEWSKA K, et al. Effect of zeolite amount on the properties of Pt/(AlSBA-15 + Beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane[J]. Fuel, 2020, 280: 118607. |
8 | LOK B M, MESSINA C A, PATTON R L, et al. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1984, 106(20): 6092-6093. |
9 | ZHANG S, CHEN S, DONG P, et al. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media[J]. Applied Catalysis A: General, 2007, 332(1): 46-55. |
10 | PARK K C, IHM S K. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization[J]. Applied Catalysis A: General, 2000, 203(2): 201-209. |
11 | CAMPELO J M, LAFONT F, MARINAS J M. Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst[J]. Applied Catalysis A: General, 1998, 170(1): 139-144. |
12 | GIRGIS M J, TSAO Y P. Impact of catalyst metal-acid balance in n-hexadecane hydroisomerization and hydrocracking[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 386-396. |
13 | MARTENS J A, SOUVERIJNS W, VERRELST W, et al. Selective isomerization of hydrocarbon chains on external surfaces of zeolite crystals[J]. Angewandte Chemie International Edition, 1995, 34(22): 2528-2530. |
14 | BLASCO T, CHICA A, CORMA A, et al. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties[J]. Journal of Catalysis, 2006, 242(1): 153-161. |
15 | RABAEV M, LANDAU M V, VIDRUK R, et al. Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation isomerization aromatization of vegetable oil[J]. Journal of Catalysis, 2015, 332: 164-176. |
16 | 陈治平, 王苗苗, 韦晓艺, 等. 复合分子筛在烃类异构化反应中的应用研究进展[J]. 化工进展, 2022, 41(5): 2404-2415. |
CHEN Zhiping, WANG Miaoiao, WEI Xiaoyi, et al. Application of composite molecular sieve in hydrocarbon isomerization[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2404-2415. | |
17 | XING G, LIU S, GUAN Q, et al. Investigation on hydroisomerization and hydrocracking of C15~C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
18 | CAMPELO J M, LAFONT F, MARINAS J M. Hydroisomerization and hydrocracking of n-hexane on Pt/SAPO-5 and Pt/SAPO-11 catalysts[J]. Zeolites, 1995, 15(2): 97-103. |
19 | HÖCHTL M, JENTYS A, VINEK H. Alkane conversion over Pd/SAPO molecular sieves: influence of acidity, metal concentration and structure[J]. Catalysis Today, 2001, 65(2): 171-177. |
20 | PARLITZ B, SCHREIER E, ZUBOWA H L, et al. Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular sieves[J]. Journal of Catalysis, 1995, 155(1): 1-11. |
21 | FAN Y, XIAO H, SHI G, et al. Alkylphosphonic acid- and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins[J]. Journal of Catalysis, 2012, 285(1): 251-259. |
22 | CHEN Z, XU J, FAN Y, et al. Reaction mechanism and kinetic modeling of hydroisomerization and hydroaromatization of fluid catalytic cracking naphtha[J]. Fuel Processing Technology, 2015, 130: 117-126. |
23 | SINHA A K, SIVASANKER S. Hydroisomerization of n-hexane over Pt-SAPO-11 and Pt-SAPO-31 molecular sieves[J]. Catalysis Today, 1999, 49(1): 293-302. |
24 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
25 | MARTENS J A, VANBUTSELE G, JACOBS P A, et al. Evidences for pore mouth and key–lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catalysis Today, 2001, 65(2): 111-116. |
26 | MÉRIAUDEAU P, TUAN V A, SAPALY G, et al. Pore size and crystal size effects on the selective hydroisomerisation of C8 paraffins over Pt-Pd/SAPO-11, Pt–Pd/SAPO-41 bifunctional catalysts[J]. Catalysis Today, 1999, 49(1): 285-292. |
27 | NGHIEM V T, SAPALY G, MÉRIAUDEAU P, et al. Monodimensional tubular medium pore molecular sieves for selective hydroisomerisation of long chain alkanes: n-octane reaction on ZSM and SAPO type catalysts[J]. Topics in Catalysis, 2000, 14(1): 131-138. |
28 | 杜艳泽, 秦波, 王会刚, 等. 多级孔分子筛在重油加氢裂化催化剂的应用进展[J]. 化工进展, 2021, 40(4): 1859-1867. |
DU Yanze, QIN Bo, WANG Huigang, et al. Development of hierarchical zeolites in hydrocracking catalysts of heavy oil[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1859-1867. | |
29 | Pérez-Ramírez J, Christensen C H, Egeblad K, et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
30 | 肖寒, 于海斌, 刘红光, 等. 晶种硅烷化合成小粒径SAPO-11分子筛表征及其临氢异构化催化性能评价[J]. 石油炼制与化工, 2014, 45(1): 28-34. |
XIAO Han, YU Haibin, LIU Hongguang, et al. Characterization of small particle size SAPO-11 molecular sieves synthesized by seed silanization and evaluation of their catalytic performance in hydroisomerization[J]. Petroleum Processing and Petrochemicals, 2014, 45(1): 28-34. | |
31 | GUO L, BAO X, FAN Y, et al. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes[J]. Journal of Catalysis, 2012, 294: 161-170. |
32 | 章芬, 刘艳, 孟祥举, 等. 用聚胍盐作为介孔模板剂合成多级孔SAPO-11 分子筛[C]//第18届全国分子筛学术大会, 上海, 2015. |
ZHANG Fen, LIU Yan, MENG Xiangju, et al. Multistage pore SAPO-11 molecular sieves were synthesized by using guanidine as mesoporous template[C]//The 18th National Molecular Sieve Academic Conference, Shanghai, 2015. | |
33 | 杨妮, 彭礼波, 欧阳仟, 等. 多级孔SAPO-11的制备及其临氢异构性能[J]. 石油化工, 2018, 47(12): 1318-1325. |
YANG Ni, PENG Libo, OUYANG Qian, et al. Synthesis of hierarchical SAPO-11 and catalytic performance thereof in hydroisomerization[J]. Petrochemical Technology, 2018, 47(12): 1318-1325. | |
34 | AGLIULLIN M R, FAIZULLIN A V, KHAZIPOVA A N, et al. Synthesis of fine-crystalline SAPO-11 zeolites and analysis of their physicochemical and catalytic properties[J]. Kinetics and Catalysis, 2020, 61(4): 654-662. |
35 | MONEGHINI M, KIKIC I, VOINOVICH D, et al. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution[J]. International Journal of Pharmaceutics, 2001, 222(1): 129-138. |
36 | CHANG C J, RANDOLPH A D. Solvent expansion and solute solubility predictions in gas-expanded liquids[J]. AIChE Journal, 1990, 36(6): 939-942. |
37 | WEN C, HAN S, XU J, et al. A novel route to synthesize SAPO-11 molecular sieves with a high external surface area in the presence of ethylene glycol and supercritical carbon dioxide for 1-octene hydroisomerization to dimethylhexanes[J]. Journal of Catalysis, 2017, 356: 100-110. |
38 | 罗小林, 陈亚芍, 常鹏梅, 等. 离子胶束诱导微波合成 SAPO-11 分子筛微球[J]. 物理化学学报, 2009(1): 137-144. |
LUO Xiaolin, CHEN Yashao, CHANG Pengmei, et al. Synthesis of SAPO-11 molecular sieve microspheres using a microwave technique and mediated by ionic micelles[J]. Acta Physico-Chimica Sinica, 2009(1): 137-144. | |
39 | MÉRIAUDEAU P, TUAN V A, LEFEBVRE F, et al. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion[J]. Microporous and Mesoporous Materials, 1998, 22(1): 435-449. |
40 | HUANG X, WANG L, KONG L, et al. Improvement of catalytic properties of SAPO-11 molecular sieves synthesized in H2O-CTAB-butanol system[J]. Applied Catalysis A: General, 2003, 253(2): 461-467. |
41 | VALLEAU J P, IVKOV R, TORRIE G M. Colloid stability: the forces between charged surfaces in an electrolyte[J]. The Journal of Chemical Physics, 1991, 95(1): 520-532. |
42 | PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface[J]. Advances in Colloid and Interface Science, 2004, 110(3): 75-95. |
43 | LYUBOVSKY M, PFEFFERLE L. Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: n-octane hydroconversion[J]. Applied Catalysis A: General, 1998, 173(1): 107-119. |
44 | SINHA A K, SAINKAR S, SIVASANKER S. An improved method for the synthesis of the silicoaluminophosphate molecular sieves, SAPO-5, SAPO-11 and SAPO-31[J]. Microporous and Mesoporous Materials, 1999, 31(3): 321-331. |
45 | LIU P, REN J, SUN Y. Hydro-treating and hydro-isomerisation of sunflower oil using Pt/SAPO-11: influence of templates in ultrasonic assisted with hydrothermal synthesis[J]. Chinese Journal of Catalysis, 2008, 29(4): 379-384. |
46 | ZHANG S, CHEN S, DONG P, et al. Progress in synthetic strategy and industrial preparation of aliphatic nitriles[J]. Catalysis Letters, 2007, 118(1/2): 109-117. |
47 | 刘艳惠, 任行涛, 杨光, 等. 不同晶化方式对SAPO-11分子筛的物化性质的影响[J]. 现代化工, 2014, 34(5): 100-102. |
LIU Yanhui, RENG Xingtao, Yang Guang, et al. Effect of different crystallization ways on physical and chemical properties of SAPO-11[J]. Modern Chemical Industry, 2014, 34(5): 100-102. | |
48 | GUO L, FAN Y, BAO X, et al. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization[J]. Journal of Catalysis, 2013, 301: 162-173. |
49 | 崔岩, 王晓化, 韩明汉, 等. 小晶粒Beta分子筛的微波合成[J]. 硅酸盐学报, 2019, 47(1): 48-54. |
CUI Yan, WANG Xiaohua, HAN Minghan, et al. Microwave synthesis of small grain Beta molecular sieves[J]. Journal of the Chinese Ceramic Society, 2019, 47(1): 48-54. | |
50 | BÉRTOLO R, SILVA J M, RIBEIRO M F, et al. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: effect of physical parameters and chemical gel composition[J]. Applied Catalysis A: General, 2017, 542: 28-37. |
51 | HAN L, LIU Y, SUBHAN F, et al. Particle effect of SAPO-11 promoter on isomerization reaction in FCC units[J]. Microporous and Mesoporous Materials, 2014, 194: 90-96. |
52 | 韩磊, 崔晓, 刘欣梅. SAPO-11分子筛的粒度调控[J]. 无机化学学报, 2013, 29(3): 565-570. |
HAN Lei, CUI Xiao, LIU Xinmei. Particle size regulation of SAPO-11 molecular sieve[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(3): 565-570. | |
53 | LIU Y, CUI X, HAN L, et al. Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite[J]. Microporous and Mesoporous Materials, 2014, 198: 230-235. |
54 | LIU Y, ZHENG D, ZHAO L, et al. Effect of fluoride ions on the stability of SAPO-11 molecular sieves[J]. Microporous and Mesoporous Materials, 2020, 306: 110461. |
55 | GE L, YU G, CHEN X, et al. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane[J]. New Journal of Chemistry, 2020, 44(7): 2996-3003. |
56 | LOPEZ S, INAYAT A, SCHWAB A, et al. Zeolitic materials with hierarchical porous structures[J]. Advanced Materials, 2011, 23(22/23): 2602-2615. |
57 | JACOBSEN C J H, MADSEN C, HOUZVICKA J, et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
58 | CHRISTENSEN C H, SCHMIDT I, CARLSSON A, et al. Crystals in crystals nanocrystals within mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2005, 127(22): 8098-8102. |
59 | 李浩, 王海彦, 孙娜, 等. 干凝胶法合成多级孔SAPO-11分子筛及其异构化性能[J]. 辽宁石油化工大学学报, 2018, 38(5): 9-13. |
LI Hao, WANG Haiyan, SUN Na, et al. Synthesis of SAPO-11 molecular sieves with multistage pores by dry gel method and its isomerization performance[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2018, 38(5): 9-13. | |
60 | SHENG N, XU H, LIU X, et al. Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support[J]. Catalysis Today, 2020, 350: 165-170. |
61 | 李文林, 郑金玉, 罗一斌, 等. 多级孔分子筛制备方法、机理和应用研究进展[J]. 石油学报(石油加工), 2016, 32(6): 1273-1286. |
LI Wenlin, ZHENG Jinyu, LUO Yibin, et al. Progress in preparation, mechanism and application of multistage molecular sieves[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(6): 1273-1286. | |
62 | EGEBLAD K, KUSTOVA M, KLITGAARD S K, et al. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media[J]. Microporous and Mesoporous Materials, 2007, 101(1-2): 214-223. |
63 | 张一成. 软模板法合成多级孔道沸石材料及其过程研究[D]. 上海: 华东理工大学, 2014. |
ZHANG Yicheng. Soft-templating synthesis of hierarchical zeolitic materials: mechanism and structure manipulation[D]. Shanghai: East China University of Science and Technology, 2014. | |
64 | 李雪. 多级孔SAPO-11沸石的合成及催化甘油加氢生成1,2-丙二醇的研究[D]. 南京: 东南大学, 2019. |
LI Xue. Synthesis of multistage pore SAPO-11 zeolite and catalytic hydrogenation of glycerol to 1, 2-propanediol[D]. Nanjing: Southeast University, 2019. | |
65 | KIM M Y, LEE K, CHOI M. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity[J]. Journal of Catalysis, 2014, 319: 232-238. |
66 | 孙娜, 王海彦, 李浩, 等. 剑麻纤维素合成多级孔 SAPO-11 分子筛及其临氢异构化性能[J]. 硅酸盐学报, 2018, 46(1): 108-115. |
SUN Na, WANG Haiyan, LI Hao, et al. Synthesis of hierarchical pore SAPO-11 molecular sieve by sisal fiber and its hydrogen isomerization performance[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 108-115. | |
67 | BÉRTOLO R, SILVA J M, RIBEIRO F, et al. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization[J]. Applied Catalysis A: General, 2014, 485: 230-237. |
68 | MA Z, LIU Z, SONG H, et al. Synthesis of hierarchical SAPO-11 for hydroisomerization reaction in refinery processes[J]. Applied Petrochemical Research, 2014, 4(4): 351-358. |
69 | CHOI M, CHO H S, SRIVASTAVA R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
70 | WANG H, PINNAVAIA T J. MFI zeolite with small and uniform intracrystal mesopores[J]. Angewandte Chemie International Edition, 2006, 45(45): 7603-7606. |
71 | VALTCHEV V, SMAIHI M, FAUST A, et al. Biomineral-silica-induced zeolitization of equisetum arvense[J]. Angewandte Chemie International Edition, 2003, 42(24): 2782-2785. |
72 | 陈治平, 石发翔, 汪广恒, 等. 合成方法对合成多级孔 SAPO-11 分子筛的影响[J]. 硅酸盐学报, 2020, 48(4): 577-583. |
CHEN Zhiping, SHI Faxiang, WANG Guangheng, et al. Effect of synthetic methods on synthesis of hierarchical porous SAPO-11[J]. Journal of the Chinese Ceramic Society, 2020, 48(4): 577-583. | |
73 | XIAO F, WANG L, YIN C, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie International Edition, 2006, 45(19): 3090-3093. |
74 | PARK D H, KIM S S, WANG H, et al. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores[J]. Angewandte Chemie International Edition, 2009, 48(41): 7645-7648. |
75 | 胡小夫, 马跃龙, 李作金, 等. 梯度孔SAPO-11分子筛的合成及Pt/SAPO-11催化剂的加氢异构化性能[J]. 石油学报(石油加工), 2016, 32(1): 35-41. |
HU Xiaofu, MA Yuelong, LI Zuojin, et al. Synthesis of SAPO-11 with gradient pore size and hydrogenation isomerization performance of Pt/SAPO-11 catalyst [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1): 35-41. | |
76 | LIU Y, QU W, CHANG W, et al. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine[J]. Journal of Colloid and Interface Science, 2014, 418: 193-199. |
77 | ZHANG S, CHEN S, DONG P. Synthesis, characterization and hydroisomerization performance of SAPO-11 molecular sieves with caverns by polymer spheres[J]. Catalysis Letters, 2009, 136(1/2): 126-133. |
78 | TAO S, LI X, LYU G, et al. Highly mesoporous SAPO-11 molecular sieves with tunable acidity: facile synthesis, formation mechanism and catalytic performance in hydroisomerization of n-dodecane[J]. Catalysis Science & Technology, 2017, 7(23): 5775-5784. |
79 | LIU Y, LIU W, LYU Y, et al. Intra-crystalline mesoporous SAPO-11 prepared by a grinding synthesis method as FCC promoters to increase iso-paraffin of gasoline[J]. Microporous and Mesoporous Materials, 2020, 305: 110320. |
80 | LIU Y, XU L, LYU Y, et al. Regulating acidity, porosity, and morphology of hierarchical SAPO-11 zeolite by aging treatment[J]. Journal of Colloid and Interface Science, 2016, 479: 55-63. |
81 | JIN D, YE G, ZHENG J, et al. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks[J]. ACS Catalysis, 2017, 7(9): 5887-5902. |
82 | YU G, QIU M, WANG T, et al. Optimization of the pore structure and acidity of SAPO-11 for highly efficient hydroisomerization on the long-chain alkane[J]. Microporous and Mesoporous Materials, 2021, 320: 111076. |
83 | CHEN Z, DONG Y, JIANG S, et al. Low-temperature synthesis of hierarchical architectures of SAPO-11 zeolite as a good hydroisomerization support[J]. Journal of Materials Science, 2017, 52(8): 4460-4471. |
84 | CHEN Z, SONG W, ZHU S, et al. Synthesis of a multi-branched dandelion-like SAPO-11 by an in situ inoculating seed-induced-steam-assisted conversion method (SISAC) as a highly effective hydroisomerization support[J]. RSC Advances, 2017, 7(8): 4656-4666. |
85 | YUAN Z, CHENG Y, MA S, et al. Instant exactness synthesis and n-heptane hydroisomerization of high performance Ni/SAPO-11 catalyst[J]. Journal of Porous Materials, 2020, 27(5): 1455-1466. |
86 | SONG H, LIU Z, XING W, et al. Preparation of hierarchical SAPO-11 molecular sieve and its application for n-dodecane isomerization[J]. Applied Petrochemical Research, 2014, 4(4): 401-407. |
87 | JIN D, LI L, YE G, et al. Manipulating the mesostructure of silicoaluminophosphate SAPO-11 via tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization[J]. Catalysis Science & Technology, 2018, 8(19): 5044-5061. |
88 | JIN D, LIU Z, ZHENG J, et al. Nonclassical from-shell-to-core growth of hierarchically organized SAPO-11 with enhanced catalytic performance in hydroisomerization of n-heptane[J]. RSC Advances, 2016, 6(39): 32523-32533. |
89 | ZHANG P, LIU H, YUE Y, et al. Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance[J]. Fuel Processing Technology, 2018, 179: 72-85. |
90 | YANG L, LI H, FU J Y, et al. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes[J]. RSC Advances, 2019, 9(59): 34457-34464. |
91 | WEN C, WANG X, XU J, et al. Hierarchical SAPO-11 molecular sieve-based catalysts for enhancing the double-branched hydroisomerization of alkanes[J]. Fuel, 2019, 255: 115821. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |