Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2939-2947.DOI: 10.16085/j.issn.1000-6613.2021-1405
• Chemical processes and equipment • Previous Articles Next Articles
LI Guixian1,2(), ZHANG Junqiang1,2, YANG Yong1,2, FAN Xueying3, WANG Dongliang1,2()
Received:
2021-07-05
Revised:
2021-11-11
Online:
2022-06-21
Published:
2022-06-10
Contact:
WANG Dongliang
李贵贤1,2(), 张军强1,2, 杨勇1,2, 范学英3, 王东亮1,2()
通讯作者:
王东亮
作者简介:
李贵贤(1966—),男,博士,教授,博士生导师,研究方向为催化反应工程。E-mail:基金资助:
CLC Number:
LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947.
李贵贤, 张军强, 杨勇, 范学英, 王东亮. 基于PX选择性强化的短流程甲苯甲醇甲基化PX生产新工艺[J]. 化工进展, 2022, 41(6): 2939-2947.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1405
序号 | 反应方程式 | 反应速率表达式 | 指前因子 | 活化能 |
---|---|---|---|---|
R1 | C7H8+CH3OH | 5.66×105 | 76.66 | |
R2 | p-C8H10 | 5.85×10-2 | 19.24 | |
R3 | p-C8H10 | 7.71×10-2 | 16.80 | |
R4 | p-C8H10+CH3OH | 1.16×104 | 57.47 | |
R5 | o-C8H10+CH3OH | 1.16×104 | 57.47 | |
R6 | m-C8H10+CH3OH | 1.16×104 | 57.47 | |
R7 | 2CH3OH | 1.73×104 | 44.94 |
序号 | 反应方程式 | 反应速率表达式 | 指前因子 | 活化能 |
---|---|---|---|---|
R1 | C7H8+CH3OH | 5.66×105 | 76.66 | |
R2 | p-C8H10 | 5.85×10-2 | 19.24 | |
R3 | p-C8H10 | 7.71×10-2 | 16.80 | |
R4 | p-C8H10+CH3OH | 1.16×104 | 57.47 | |
R5 | o-C8H10+CH3OH | 1.16×104 | 57.47 | |
R6 | m-C8H10+CH3OH | 1.16×104 | 57.47 | |
R7 | 2CH3OH | 1.73×104 | 44.94 |
工艺参数 | 优化前 | 优化后 |
---|---|---|
温度/℃ | 493.00 | 470.00 |
压力/kPa | 300.00 | 350.00 |
空时/g·h·mol-1 | 1.37 | 1.20 |
甲苯甲醇进料比 | 6.72 | 8.10 |
对二甲苯选择性/% | 99.62 | 99.71 |
甲苯转化率/% | 14.57 | 12.00 |
甲醇转化率/% | 97.24 | 92.12 |
工艺参数 | 优化前 | 优化后 |
---|---|---|
温度/℃ | 493.00 | 470.00 |
压力/kPa | 300.00 | 350.00 |
空时/g·h·mol-1 | 1.37 | 1.20 |
甲苯甲醇进料比 | 6.72 | 8.10 |
对二甲苯选择性/% | 99.62 | 99.71 |
甲苯转化率/% | 14.57 | 12.00 |
甲醇转化率/% | 97.24 | 92.12 |
设备编号 | 模块名称 | 设备名称 | 工艺参数 |
---|---|---|---|
C-101和C-102 | Compr | 单级压缩机 | 级数:单级;出口压力400kPa,效率0.80 |
H-101 | Heater | 预热器 | 冷物流出口温度90℃ |
H-102 | Heater | 加热器 | 冷物流出口温度470°C |
H-103 | Heater | 冷却器 | 热物流出口温度40℃ |
H-104 | Heater | 预热器 | 冷物流出口温度150℃ |
P-101~P-107 | Pump | 进料泵/循环泵 | 泵出口压力400kPa,效率0.90 |
R-101 | Rplug | 甲基化反应器 | 绝热操作,压力350kPa |
催化剂:改性高硅铝比HZSM-5 | |||
V-101 | Flash2 | 闪蒸罐 | 温度40℃,压力300kPa |
D-101 | Decanter | 析水器 | 绝热操作,压力300kPa |
T-101 | Radfrac | 甲苯精馏塔 | 操作压力200kPa;塔顶馏出物与进料比0.88 |
塔顶冷凝器类型:部分汽-液 | |||
理论板数80;进料板位置40;回流比1.55 | |||
T-102 | Radfrac | 对二甲苯精馏塔 | 操作压力200kPa;塔顶馏出物与进料比0.977 |
塔顶冷凝器类型:全回流 | |||
理论板数103;进料板位置12;回流比4.129 | |||
S-101 | FSplit | 分流器 | 弛放分流比0.1 |
S-102 | FSplit | 分流器 | 弛放分流比0.36 |
设备编号 | 模块名称 | 设备名称 | 工艺参数 |
---|---|---|---|
C-101和C-102 | Compr | 单级压缩机 | 级数:单级;出口压力400kPa,效率0.80 |
H-101 | Heater | 预热器 | 冷物流出口温度90℃ |
H-102 | Heater | 加热器 | 冷物流出口温度470°C |
H-103 | Heater | 冷却器 | 热物流出口温度40℃ |
H-104 | Heater | 预热器 | 冷物流出口温度150℃ |
P-101~P-107 | Pump | 进料泵/循环泵 | 泵出口压力400kPa,效率0.90 |
R-101 | Rplug | 甲基化反应器 | 绝热操作,压力350kPa |
催化剂:改性高硅铝比HZSM-5 | |||
V-101 | Flash2 | 闪蒸罐 | 温度40℃,压力300kPa |
D-101 | Decanter | 析水器 | 绝热操作,压力300kPa |
T-101 | Radfrac | 甲苯精馏塔 | 操作压力200kPa;塔顶馏出物与进料比0.88 |
塔顶冷凝器类型:部分汽-液 | |||
理论板数80;进料板位置40;回流比1.55 | |||
T-102 | Radfrac | 对二甲苯精馏塔 | 操作压力200kPa;塔顶馏出物与进料比0.977 |
塔顶冷凝器类型:全回流 | |||
理论板数103;进料板位置12;回流比4.129 | |||
S-101 | FSplit | 分流器 | 弛放分流比0.1 |
S-102 | FSplit | 分流器 | 弛放分流比0.36 |
项目 | 物流 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | |
温度/℃ | 25.00 | 25.00 | 25.00 | 25.00 | 470.00 | 478.40 | 40.00 | 40.00 | 27.00 | 135.50 | 165.65 | 224.53 |
压力/kPa | 101.33 | 101.33 | 101.33 | 101.33 | 350.00 | 350.00 | 300.00 | 300.00 | 300.00 | 200.00 | 200.00 | 400.00 |
气相分率 | 1.00 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 |
总摩尔流量/kmol·h-1 | 90.00 | 2371.00 | 185.50 | 187.00 | 9448.66 | 9579.56 | 95.09 | 855.80 | 2555.18 | 1347.72 | 179.13 | 4.12 |
组分摩尔流量/kmol·h-1 | ||||||||||||
H2 | 90.00 | 0 | 0 | 0 | 907.68 | 907.68 | 90.00 | 810.01 | 0 | 7.67 | 0 | 0 |
C2H4 | 0 | 0 | 0 | 0 | 0.06 | 0.06 | 0 | 0.04 | 0 | 0.02 | 0 | 0 |
M | 0 | 0 | 0 | 187.00 | 70.90 | 14.82 | 0.02 | 0.17 | 0 | 14.63 | 0 | 0 |
T | 0 | 0 | 185.50 | 0 | 1523.41 | 1340.26 | 2.20 | 19.76 | 0 | 1318.15 | 0.15 | 0 |
OX | 0 | 0 | 0 | 0 | 0 | 0.24 | 0 | 0 | 0 | 0 | 0.12 | 0.12 |
PX | 0 | 0 | 0 | 0 | 0.56 | 179.39 | 0.06 | 0.55 | 0 | 0.01 | 178.59 | 0.18 |
MX | 0 | 0 | 0 | 0 | 0 | 0.27 | 0 | 0 | 0 | 0 | 0.27 | 0 |
C9H12 | 0 | 0 | 0 | 0 | 0 | 3.82 | 0 | 0 | 0 | 0 | 0 | 3.82 |
H2O | 0 | 2371.00 | 0 | 0 | 6946.05 | 7133.03 | 2.81 | 25.27 | 2555.18 | 7.24 | 0 | 0 |
项目 | 物流 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | |
温度/℃ | 25.00 | 25.00 | 25.00 | 25.00 | 470.00 | 478.40 | 40.00 | 40.00 | 27.00 | 135.50 | 165.65 | 224.53 |
压力/kPa | 101.33 | 101.33 | 101.33 | 101.33 | 350.00 | 350.00 | 300.00 | 300.00 | 300.00 | 200.00 | 200.00 | 400.00 |
气相分率 | 1.00 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 0 | 1.00 | 0 | 0 |
总摩尔流量/kmol·h-1 | 90.00 | 2371.00 | 185.50 | 187.00 | 9448.66 | 9579.56 | 95.09 | 855.80 | 2555.18 | 1347.72 | 179.13 | 4.12 |
组分摩尔流量/kmol·h-1 | ||||||||||||
H2 | 90.00 | 0 | 0 | 0 | 907.68 | 907.68 | 90.00 | 810.01 | 0 | 7.67 | 0 | 0 |
C2H4 | 0 | 0 | 0 | 0 | 0.06 | 0.06 | 0 | 0.04 | 0 | 0.02 | 0 | 0 |
M | 0 | 0 | 0 | 187.00 | 70.90 | 14.82 | 0.02 | 0.17 | 0 | 14.63 | 0 | 0 |
T | 0 | 0 | 185.50 | 0 | 1523.41 | 1340.26 | 2.20 | 19.76 | 0 | 1318.15 | 0.15 | 0 |
OX | 0 | 0 | 0 | 0 | 0 | 0.24 | 0 | 0 | 0 | 0 | 0.12 | 0.12 |
PX | 0 | 0 | 0 | 0 | 0.56 | 179.39 | 0.06 | 0.55 | 0 | 0.01 | 178.59 | 0.18 |
MX | 0 | 0 | 0 | 0 | 0 | 0.27 | 0 | 0 | 0 | 0 | 0.27 | 0 |
C9H12 | 0 | 0 | 0 | 0 | 0 | 3.82 | 0 | 0 | 0 | 0 | 0 | 3.82 |
H2O | 0 | 2371.00 | 0 | 0 | 6946.05 | 7133.03 | 2.81 | 25.27 | 2555.18 | 7.24 | 0 | 0 |
工艺 | 原料/kmol·h-1 | 对二甲苯 /kmol·h-1 | 甲苯 有效利用率/% | 甲醇 有效利用率/% | |
---|---|---|---|---|---|
甲苯 | 甲醇 | ||||
Ashraf工艺[ | 215.24 | 393.65 | 178.59 | 82.97 | 45.36 |
Liu工艺[ | 215.24 | 393.00 | 178.37 | 82.87 | 45.38 |
新工艺 | 185.50 | 187.00 | 178.59 | 96.27 | 95.50 |
工艺 | 原料/kmol·h-1 | 对二甲苯 /kmol·h-1 | 甲苯 有效利用率/% | 甲醇 有效利用率/% | |
---|---|---|---|---|---|
甲苯 | 甲醇 | ||||
Ashraf工艺[ | 215.24 | 393.65 | 178.59 | 82.97 | 45.36 |
Liu工艺[ | 215.24 | 393.00 | 178.37 | 82.87 | 45.38 |
新工艺 | 185.50 | 187.00 | 178.59 | 96.27 | 95.50 |
流股名称 | 流股位置 | 起始温度 /℃ | 目标温度 /℃ | 热负荷/MW |
---|---|---|---|---|
CS1 | 甲醇进料预热 | 25.00 | 90.00 | 0.39 |
CS2 | 反应器进料 | 77.00 | 470.00 | 147.20 |
CS3 | H-104进料预热器 | 28.90 | 150.00 | 11.06 |
CS4 | T-101塔釜再沸器 | 165.90 | 166.10 | 27.80 |
CS5 | T-102塔釜再沸器 | 224.00 | 224.50 | 8.74 |
HS1 | 反应器出口 | 479.00 | 40.00 | 171.20 |
HS2 | T-101塔顶冷凝器 | 136.10 | 135.50 | 18.46 |
HS3 | T-102塔顶冷凝器 | 166.20 | 165.70 | 8.73 |
流股名称 | 流股位置 | 起始温度 /℃ | 目标温度 /℃ | 热负荷/MW |
---|---|---|---|---|
CS1 | 甲醇进料预热 | 25.00 | 90.00 | 0.39 |
CS2 | 反应器进料 | 77.00 | 470.00 | 147.20 |
CS3 | H-104进料预热器 | 28.90 | 150.00 | 11.06 |
CS4 | T-101塔釜再沸器 | 165.90 | 166.10 | 27.80 |
CS5 | T-102塔釜再沸器 | 224.00 | 224.50 | 8.74 |
HS1 | 反应器出口 | 479.00 | 40.00 | 171.20 |
HS2 | T-101塔顶冷凝器 | 136.10 | 135.50 | 18.46 |
HS3 | T-102塔顶冷凝器 | 166.20 | 165.70 | 8.73 |
项目 | 费用 |
---|---|
TCI | |
塔壳成本/kUSD | |
塔盘成本/kUSD | |
塔径D/m | Aspen tray sizing |
塔高H/m | |
换热器成本/USD | |
换热面积A/m2 | |
TOC | |
加热炉/USD·MW-1·a-1 | 17.1 |
急冷水/USD·MW-1·a-1 | 0.36 |
电费/USD·(kW·h·a)-1 | 0.132 |
高压蒸汽/USD·MW-1·a-1 | 35.6 |
中压蒸汽/USD·MW-1·a-1 | 29.6 |
低压蒸汽/USD·MW-1·a-1 | 28.0 |
总年度成本TAC/kUSD·a-1 |
项目 | 费用 |
---|---|
TCI | |
塔壳成本/kUSD | |
塔盘成本/kUSD | |
塔径D/m | Aspen tray sizing |
塔高H/m | |
换热器成本/USD | |
换热面积A/m2 | |
TOC | |
加热炉/USD·MW-1·a-1 | 17.1 |
急冷水/USD·MW-1·a-1 | 0.36 |
电费/USD·(kW·h·a)-1 | 0.132 |
高压蒸汽/USD·MW-1·a-1 | 35.6 |
中压蒸汽/USD·MW-1·a-1 | 29.6 |
低压蒸汽/USD·MW-1·a-1 | 28.0 |
总年度成本TAC/kUSD·a-1 |
1 | 顾祥万. 对二甲苯市场分析及发展建议[J]. 化工进展, 2014, 33(6): 1628-1631. |
GU Xiangwan. Paraxylene market analysis and development proposal[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1628-1631. | |
2 | ZHANG Jingui, QIAN Weizhong, KONG Chuiyan, et al. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catalysis, 2015, 5(5): 2982-2988. |
3 | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. | |
4 | 于政锡, 徐庶亮, 张涛, 等. 对二甲苯生产技术研究进展及发展趋势[J]. 化工进展, 2020, 39(12): 4984-4992. |
YU Zhengxi, XU Shuliang, ZHANG Tao, et al. Research progress and development trend in para-xylene production technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4984-4992. | |
5 | CHAKINALA Nandana, CHAKINALA Anand. Process design strategies to produce p-xylene via toluene methylation: a review[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5331-5351. |
6 | 张玉黎, 徐庶亮, 叶茂. 甲醇甲苯烷基化流化床反应器的数值模拟[J]. 化工进展, 2020, 39(12): 5057-5065. |
ZHANG Yuli, XU Shuliang, YE Mao. A numerical investigation on alkylation of toluene with methanol in fluidized bed reactor[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5057-5065. | |
7 | CHEN Qingteng, LIU Jian, YANG Bo. Identifying the key steps determining the selectivity of toluene methylation with methanol over HZSM-5[J]. Nature Communications, 2021, 12(1): 3725. |
8 | 代成义, 陈中顺, 杜康, 等. 甲醇制芳烃催化剂及相关工艺研究进展[J]. 化工进展, 2020, 39(12): 5029-5041. |
DAI Chengyi, CHEN Zhongshun, DU Kang, et al. Research progress of catalysts and related technologies for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5029-5041. | |
9 | HUANG Xin, WANG Ruizhuang, PAN Xu, et al. Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation[J]. Green Energy & Environment, 2020, 5(4): 385-393. |
10 | ZHANG Chundong, KWAK Geunjae, LEE Yun-Jo, et al. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability[J]. Microporous and Mesoporous Materials, 2019, 284: 316-326. |
11 | 张志萍, 赵岩, 吴宏宇, 等. 改性纳米HZSM-5催化剂上甲苯与甲醇的烷基化反应[J]. 催化学报, 2011, 32(7): 1280-1286. |
ZHANG Zhiping, ZHAO Yan, WU Hongyu, et al. Shape-selective alkylation of toluene with methanol over modified nano-scale HZSM-5 zeolite[J]. Chinese Journal of Catalysis, 2011, 32(7): 1280-1286. | |
12 | ASHRAF Muhammad T, CHEBBI Rachid, DARWISH Naif A. Process of p-xylene production by highly selective methylation of toluene[J]. Industrial and Engineering Chemistry Research, 2013, 52(38): 13730-13737. |
13 | LIU Jing, YANG Yu, WEI Shun’an, et al. Intensified p-xylene production process through toluene and methanol alkylation[J]. Industrial & Engineering Chemistry Research, 2018, 57(38): 12829-12841. |
14 | BREEN John, BURCH Robbie, KULKARNI Manisha, et al. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time[J]. Journal of the American Chemical Society, 2005, 127(14): 5020-5021. |
15 | BREEN John, BURCH Robbie, COLLIER Paul, et al. Improved selectivity in the toluene alkylation reaction through understanding and optimising the process variables[J]. Applied Catalysis A: General, 2007, 316(1): 53-60. |
16 | FAN Zongliang, SU Xin, WANG Dongliang, et al. Simulation of catalytic toluene alkylation with methanol in fixed-bed reactors[J]. International Journal of Chemical Kinetics, 2021, 53(4): 558-568. |
17 | 谭远婷, 祝然, 张新平, 等. 甲苯甲醇烷基化制对二甲苯动力学模型[J]. 化学反应工程与工艺, 2016, 32(2): 120-128. |
TAN Yuanting, ZHU Ran, ZHANG Xinping, et al. Kinetic model of toluene alkylation with methanol to para-xylene[J]. Chemical Reaction Engineering and Technology, 2016, 32(2): 120-128. | |
18 | CHOUDHARY Vasant, NAYAK Vikram, CHOUDHARY Tushar. Single-component sorption/diffusion of cyclic compounds from their bulk liquid phase in H-ZSM-5 zeolite[J]. Industrial & Engineering Chemistry Research, 1997, 36(5): 1812-1818. |
19 | ALABI Wahab, ATANDA Luqman, JERMY Rabindran, et al. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts[J]. Chemical Engineering Journal, 2012, 195/196: 276-288. |
20 | 唐建远, 娄报华, 宁春利, 等. 改性的高硅铝比的HZSM-5催化剂上甲苯与甲醇的择形烷基化制对二甲苯[J]. 复旦学报(自然科学版), 2013, 52(1): 23-29. |
TANG Jianyuan, LOU Baohua, NING Chunli, et al. Shape-selective alkylation of toluene and methanol to p-xylene over modified HZSM-5 catalyst with high Si/Al molar ratios[J]. Journal of Fudan University (Natural Science), 2013, 52(1): 23-29. | |
21 | 娄报华. 甲苯甲醇烷基化合成对二甲苯催化剂研究[D]. 上海: 华东理工大学, 2014. |
LOU Baohua. Catalyst of toluene alkylation with methanol to p-xylene[D]. Shanghai: East China University of Science and Technology, 2014. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[6] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[7] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[8] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[9] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[10] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[11] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[12] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[13] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[14] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[15] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |