Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2797-2805.DOI: 10.16085/j.issn.1000-6613.2022-0100
• Invited review • Previous Articles Next Articles
MU Yanjun(), SONG Qianqian, WANG Hongqiu, FU Kaimei, XUE Jing, WANG Chunjiao
Received:
2022-01-12
Revised:
2022-01-31
Online:
2022-06-21
Published:
2022-06-10
Contact:
MU Yanjun
通讯作者:
慕彦君
作者简介:
慕彦君(1994—),男,助理工程师,主要从事炼油化工信息与战略方面的研究。E-mail:CLC Number:
MU Yanjun, SONG Qianqian, WANG Hongqiu, FU Kaimei, XUE Jing, WANG Chunjiao. Strategy and inspiration of low-carbon development in the USA petrochemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2797-2805.
慕彦君, 宋倩倩, 王红秋, 付凯妹, 雪晶, 王春娇. 美国炼化行业低碳发展策略与启示[J]. 化工进展, 2022, 41(6): 2797-2805.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0100
地区 | 炼油厂数量/座 | 炼油能力/万吨·年-1 | 占总能力比例/% |
---|---|---|---|
PADD1 | 8 | 6120.0 | 6.45 |
PADD2 | 26 | 20980.3 | 22.11 |
PADD3 | 58 | 49916.2 | 52.61 |
PADD4 | 16 | 3491.0 | 3.68 |
PADD5 | 27 | 14372.9 | 15.15 |
总计 | 135 | 94880.4 | 100 |
地区 | 炼油厂数量/座 | 炼油能力/万吨·年-1 | 占总能力比例/% |
---|---|---|---|
PADD1 | 8 | 6120.0 | 6.45 |
PADD2 | 26 | 20980.3 | 22.11 |
PADD3 | 58 | 49916.2 | 52.61 |
PADD4 | 16 | 3491.0 | 3.68 |
PADD5 | 27 | 14372.9 | 15.15 |
总计 | 135 | 94880.4 | 100 |
温室气体排放类型 | 产品种类 | 1990年 | 2000年 | 2007年 | 2010年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
---|---|---|---|---|---|---|---|---|---|---|
CO2 | 乙烯 | 13.1 | 19.9 | 20.2 | 20.5 | 20.1 | 19.8 | 20 | 19.4 | 20.7 |
合成氨 | 13 | 12.2 | 9.1 | 9.2 | 10.6 | 10.2 | 11.1 | 12.2 | 12.3 | |
炭黑 | 3.4 | 4.6 | 4 | 3.3 | 3.3 | 3.2 | 3.3 | 3.4 | 3.3 | |
甲醇 | 2.5 | 3.3 | 0.5 | 0.5 | 2.1 | 2.8 | 2.9 | 3.5 | 3.8 | |
CO2利用 | 1.5 | 1.5 | 1.9 | 4.4 | 4.9 | 4.6 | 4.6 | 4.1 | 4.9 | |
磷酸 | 1.5 | 1.4 | 1.2 | 1.1 | 1 | 1 | 1 | 0.9 | 0.9 | |
纯碱 | 1.4 | 1.5 | 1.7 | 1.5 | 1.7 | 1.7 | 1.8 | 1.7 | 1.8 | |
二氧化钛 | 1.2 | 1.8 | 1.9 | 1.8 | 1.6 | 1.7 | 1.7 | 1.5 | 1.5 | |
丙烯腈 | 1.2 | 1.6 | 1.4 | 1.2 | 1.1 | 1 | 1 | 1.3 | 1.1 | |
环氧乙烷 | 1.1 | 1.8 | 1.6 | 1.4 | 1.2 | 1.1 | 1.3 | 1.3 | 1.4 | |
碳化硅 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
二氯乙烷 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | |
小计 | 40.6 | 50.2 | 44.1 | 45.5 | 48.2 | 47.7 | 49.3 | 49.9 | 52.4 | |
N2O | 己二酸 | 15.2 | 5.3 | 10.3 | 4.2 | 4.3 | 7 | 7.4 | 10.3 | 5.3 |
硝酸 | 12.1 | 13.3 | 13.2 | 11.5 | 11.6 | 10.1 | 9.3 | 9.6 | 10 | |
己内酰胺 | 1.7 | 2 | 2.2 | 2.2 | 1.9 | 1.7 | 1.5 | 1.4 | 1.4 | |
小计 | 29 | 20.6 | 25.7 | 17.9 | 17.8 | 18.8 | 18.2 | 21.3 | 16.7 | |
CH4 | 甲醇 | 0.2 | 0.3 | 0 | 0 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 |
总计 | 69.8 | 71.1 | 69.8 | 63.4 | 66.2 | 66.7 | 67.7 | 71.5 | 69.4 |
温室气体排放类型 | 产品种类 | 1990年 | 2000年 | 2007年 | 2010年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
---|---|---|---|---|---|---|---|---|---|---|
CO2 | 乙烯 | 13.1 | 19.9 | 20.2 | 20.5 | 20.1 | 19.8 | 20 | 19.4 | 20.7 |
合成氨 | 13 | 12.2 | 9.1 | 9.2 | 10.6 | 10.2 | 11.1 | 12.2 | 12.3 | |
炭黑 | 3.4 | 4.6 | 4 | 3.3 | 3.3 | 3.2 | 3.3 | 3.4 | 3.3 | |
甲醇 | 2.5 | 3.3 | 0.5 | 0.5 | 2.1 | 2.8 | 2.9 | 3.5 | 3.8 | |
CO2利用 | 1.5 | 1.5 | 1.9 | 4.4 | 4.9 | 4.6 | 4.6 | 4.1 | 4.9 | |
磷酸 | 1.5 | 1.4 | 1.2 | 1.1 | 1 | 1 | 1 | 0.9 | 0.9 | |
纯碱 | 1.4 | 1.5 | 1.7 | 1.5 | 1.7 | 1.7 | 1.8 | 1.7 | 1.8 | |
二氧化钛 | 1.2 | 1.8 | 1.9 | 1.8 | 1.6 | 1.7 | 1.7 | 1.5 | 1.5 | |
丙烯腈 | 1.2 | 1.6 | 1.4 | 1.2 | 1.1 | 1 | 1 | 1.3 | 1.1 | |
环氧乙烷 | 1.1 | 1.8 | 1.6 | 1.4 | 1.2 | 1.1 | 1.3 | 1.3 | 1.4 | |
碳化硅 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
二氯乙烷 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | |
小计 | 40.6 | 50.2 | 44.1 | 45.5 | 48.2 | 47.7 | 49.3 | 49.9 | 52.4 | |
N2O | 己二酸 | 15.2 | 5.3 | 10.3 | 4.2 | 4.3 | 7 | 7.4 | 10.3 | 5.3 |
硝酸 | 12.1 | 13.3 | 13.2 | 11.5 | 11.6 | 10.1 | 9.3 | 9.6 | 10 | |
己内酰胺 | 1.7 | 2 | 2.2 | 2.2 | 1.9 | 1.7 | 1.5 | 1.4 | 1.4 | |
小计 | 29 | 20.6 | 25.7 | 17.9 | 17.8 | 18.8 | 18.2 | 21.3 | 16.7 | |
CH4 | 甲醇 | 0.2 | 0.3 | 0 | 0 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 |
总计 | 69.8 | 71.1 | 69.8 | 63.4 | 66.2 | 66.7 | 67.7 | 71.5 | 69.4 |
1 | USA EPA. Inventory of U.S. greenhouse gas emissions and sinks: 1990—2019[EB/OL]. . |
2 | 薛宇择, 张明源. 美国能源政策的转变与国际能源安全[J]. 中外能源, 2020, 25(8): 9-15. |
XUE Yuze, ZHANG Mingyuan. Shift of US energy policies and international energy security[J]. Sino-Global Energy, 2020, 25(8): 9-15. | |
3 | 汤匀, 陈伟. 拜登气候与能源政策主张对我国影响分析及对策建议[J]. 世界科技研究与发展, 2021, 43(5): 605-615. |
TANG Yun, CHEN Wei. The impact of Biden’s climate and energy policy proposition on China and its suggestions and countermeasures[J]. World Sci-Tech R & D, 2021, 43(5): 605-615. | |
4 | 辛靖, 王连英. “双碳”愿景对炼化产业的影响及其路径展望[J]. 石油学报(石油加工), 2021, 37(6): 1504-1510. |
XIN Jing, WANG Lianying. Impacts of “dual carbon” vision on refining and chemical industry and prospects for its paths[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1504-1510. | |
5 | 蔡浩, 李海静, 刘静. 从国际比较看碳达峰对中国经济的启示[J]. 新金融, 2021(5): 23-29. |
CAI Hao, LI Haijing, LIU Jing. The enlightenment of carbon peak to China’s economy from the perspective of international comparison[J]. New Finance, 2021(5): 23-29. | |
6 | 宋倩倩, 慕彦君, 侯雨璇, 等. 中美两国石油化工产业实力对比分析[J]. 化工进展, 2020, 39(5): 1607-1619. |
SONG Qianqian, MU Yanjun, HOU Yuxuan, et al. Comparative analysis of the strength of petrochemical industry between China and USA[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1607-1619. | |
7 | USA EIA. Refinery capacity report[EB/OL]. [2020]. . |
8 | USA EIA. Refinery utilization and capacity[EB/OL]. [2021]. . |
9 | Markit IHS. Data browers[EB/OL]. [2021-09-07]. . |
10 | USA EIA. Fuel Consumed at refineries[EB/OL]. [2021]. . |
11 | 秦阿宁, 孙玉玲, 王燕鹏, 等. 碳中和背景下的国际绿色技术发展态势分析[J]. 世界科技研究与发展, 2021, 43(4): 385-402. |
QIN Aning, SUN Yuling, WANG Yanpeng, et al. Analysis on the development trend of international green technology under the background of carbon neutrality[J]. World Sci-Tech R & D, 2021, 43(4): 385-402. | |
12 | 荣佳, 彭勃, 刘琦, 等. 碳市场对碳捕集、利用与封存产业化发展的影响[J]. 热力发电, 2021, 50(1): 43-46. |
RONG Jia, PENG Bo, LIU Qi, et al. Influence of carbon market on carbon capture, utilization and storage industrialization development[J]. Thermal Power Generation, 2021, 50(1): 43-46. | |
13 | BURTRAW Dallas, MCCORMACK Kristen. Consignment auctions of free emissions allowances[J]. Energy Policy, 2017, 107: 337-344.[LinkOut] |
14 | 何盛宝, 乔明, 李雪静. 世界炼油行业低碳发展路径分析[J]. 国际石油经济, 2021, 29(5): 19-25. |
HE Shengbao, QIAO Ming, LI Xuejing. Analysis of low-carbon development path of the world oil refining industry[J]. International Petroleum Economics, 2021, 29(5): 19-25. | |
15 | 刁俊武, 乔志强. 炼化企业生产智能化规划与实施路径[J]. 智能制造, 2021(3): 66-69, 74. |
DIAO Junwu, QIAO Zhiqiang. Intelligent production planning and implementation path of petrochemical enterprises[J]. Intelligent Manufacturing, 2021(3): 66-69, 74. | |
16 | 何盛宝. 新形势下我国化工行业的创新与发展[J]. 化工进展, 2021, 40(1): 1-5. |
HE Shengbao. Innovation and development of China’s chemical industry against new situation[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 1-5. | |
17 | 孟昭东, 王春黎, 田静, 等. 炼油化工节能技术现状及发展创新研究[J]. 中国石油和化工标准与质量, 2020, 40(20): 44-46. |
MENG Zhaodong, WANG Chunli, TIAN Jing, et al. Research on the status and development innovation of energy-saving technology in refining and chemical industry[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(20): 44-46. | |
18 | USA EIA. Annual energy review [EB/OL]. [2021]. . |
19 | 庞晓华.陶氏有志成为减碳革命者[J].中国石油和化工产业观察,2021(6):76. |
PANG Xiaohua. Dow aims to become a revolutionary in carbon reduction[J]. Petrochemical of China Industry Observation, 2021(6): 76. | |
20 | 赵学良. 美国氢能及燃料电池产业发展现状及启示[J]. 当代石油石化, 2021, 29(10): 10-15. |
ZHAO Xueliang. Development status and enlightenment of US hydrogen energy and fuel cell industry[J]. Petroleum & Petrochemical Today, 2021, 29(10): 10-15. | |
21 | 韩笑, 张兴华, 闫华光, 等. 全球氢能产业政策现状与前景展望[J]. 电力信息与通信技术, 2021, 19(12): 27-34. |
HAN Xiao, ZHANG Xinghua, YAN Huaguang, et al. Current situation and prospect of global hydrogen energy industry policy[J]. Electric Power Information and Communication Technology, 2021, 19(12): 27-34. | |
22 | 彭冲, 贾吴帆, 龚鸣, 等. 美国能源部(DOE)H2@Scale研究计划及对我国石化行业氢能发展的启示[J]. 中外能源, 2020, 25(10): 9-18. |
PENG Chong, JIA Wufan, GONG Ming, et al. H2@Scale project from US department of energy (DOE) and its implications to the development of hydrogen energy in China’s petrochemical industry[J]. Sino-Global Energy, 2020, 25(10): 9-18. | |
23 | 康利平, EARLEY Robert, 安锋, 等. 美国可再生燃料标准实施机制与市场跟踪[J]. 生物工程学报, 2013, 29(3): 265-273. |
KANG Liping, EARLEY Robert, AN Feng, et al. U.S. Renewable Fuel Standard implementation mechanism and market tracking[J]. Chinese Journal of Biotechnology, 2013, 29(3): 265-273. | |
24 | 徐海丰. 能源转型推动全球炼化行业发生重大变化[J]. 国际石油经济, 2021, 29(5): 26-32, 64. |
XU Haifeng. Major changes droved by energy transition in the global refining industry[J]. International Petroleum Economics, 2021, 29(5): 26-32, 64. | |
25 | Life Cycle Associations. GHG Emissions reductions due to the RFS2: A 2020 update[EB/OL].. |
26 | ISRI USA. Recycled commodities-plastics [EB/OL]. . |
27 | ISRI USA. Recycling industry yearbook(2019) [EB/OL]. . |
28 | 王月, 赵秦峰, 张占全, 等. 碳中和背景下国内外废塑料裂解法回收进展[J]. 化工进展, 2022, 41(3): 1470-1478. |
WANG Yue, ZHAO Qinfeng, ZHANG Zhanquan, et al. Plastic waste recycling by pyrolysis at home and abroad under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1470-1478. | |
29 | USA ACC. Recycling & recovery goals[EB/OL]. . |
30 | 余皎. 美国炼油产业布局优化调整对中国的启示[J]. 当代石油石化, 2017, 25(1): 13-19. |
YU Jiao. The inspiration of US refining industry’s layout optimization and adjustment to China[J]. Petroleum & Petrochemical Today, 2017, 25(1): 13-19. | |
31 | 戚鸣, 张皓洁. 大型石油石化公司全球发展经验及启示[J]. 国际石油经济, 2021, 29(5): 9-18. |
QI Ming, ZHANG Haojie. The universal development experience of advanced petroleum and petrochemical players and its enlightenments[J]. International Petroleum Economics, 2021, 29(5): 9-18. | |
32 | 宋亚楠. CCUS技术的减排作用与应用前景[J]. 金融纵横, 2021(9): 35-43. |
SONG Yanan. Emission reduction effects and application prospects of CCUS[J]. Financial Perspectives Journal, 2021(9): 35-43. | |
33 | 赵雪会, 黄伟, 李宏伟, 等. 促进“双碳”目标快速实现的CCUS技术研究现状及建议[J]. 石油管材与仪器, 2021, 7(6): 26-32. |
ZHAO Xuehui, HUANG Wei, LI Hongwei, et al. Research status and suggestions of CCUS technology to promote the rapid realization of “dual carbon” goal[J]. Petroleum Tubular Goods & Instruments, 2021, 7(6): 26-32. | |
34 | Global CCS Institute, Brinckerhoff Parsons. Accelerating the uptake of CCS: industrial use of captured carbon dioxide[R]. Global CCS Institute, 2011. |
35 | 马明轩. 全球CCUS: 建设加速 潜力巨大[N]. 中国石化报, 2021-08-20(5). |
MA Mingxuan. Global CCUS: accelerating construction, huge potential[N]. China Petrochemical News, 2021-08-20(5). | |
36 | 贾凌霄, 王欢. 欧洲与北美55个碳减排关键技术: 碳捕获/利用和存储技术(CCUS)项目简介与启示[J]. 中国地质, 2021, 48(3): 974-978. |
JIA Lingxiao, WANG Huan. Introduction and implication of 55 European and North American carbon emission reduction key technology: carbon capture/utilization and storage(CCUS) projects[J]. Geology in China, 2021, 48(3): 974-978. | |
37 | 袁晴棠. 在“双碳”目标大背景下加快我国石化工业转型升级[J]. 当代石油石化, 2021, 29(11): 1-7. |
YUAN Qingtang. Accelerating transformation and upgrading of China’s petrochemical industry under carbon peak and neutralization[J]. Petroleum & Petrochemical Today, 2021, 29(11): 1-7. | |
38 | 黄海霞, 程帆, 苏义脑, 等. 碳达峰目标下我国节能潜力分析及对策[J]. 中国工程科学, 2021, 23(6): 81-91. |
HUANG Haixia, CHENG Fan, SU Yinao, et al. Energy-saving potential analysis and countermeasures for carbon peaking in China[J]. Strategic Study of CAE, 2021, 23(6): 81-91. | |
39 | 徐海丰. “净零”排放目标下国外炼油和化工公司低碳发展策略分析[J]. 国际石油经济, 2021, 29(12): 61-68. |
XU Haifeng. Low carbon development strategy analysis of foreign refining and petrochemical companies under the “net zero” emission target[J]. International Petroleum Economics, 2021, 29(12): 61-68. | |
40 | 楚海虹. 全国碳市场交易按下能源转型“加速键”[N]. 中国石油报, 2022-01-06(5). |
CHU Haihong. National carbon market deals push “accelerator” for energy transformation[N]. Zhongguo Shiyou Bao, 2022-01-06(5). |
[1] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[2] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[5] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[6] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[7] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[8] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[9] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[10] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[11] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[12] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[13] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[14] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[15] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |