Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (6): 2806-2817.DOI: 10.16085/j.issn.1000-6613.2021-1441
• Chemical processes and equipment • Previous Articles Next Articles
XU Hanzhuo(), LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen()
Received:
2021-07-08
Revised:
2021-09-30
Online:
2022-06-21
Published:
2022-06-10
Contact:
CHU Guangwen
徐涵卓(), 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文()
通讯作者:
初广文
作者简介:
徐涵卓(1998—),男,硕士研究生,研究方向为超重力反应器。E-mail:基金资助:
CLC Number:
XU Hanzhuo, LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen. Research progress in applications and numerical simulation of fluid-driven rotating equipment[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2806-2817.
徐涵卓, 刘志浩, 孙宝昌, 张亮亮, 邹海魁, 罗勇, 初广文. 流体驱动旋转装备应用与数值模拟方法研究进展[J]. 化工进展, 2022, 41(6): 2806-2817.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1441
水轮机分类 | 现代常用形式 | 结构描述 | 特点 | 水头范围/m |
---|---|---|---|---|
反击式水轮机 | ||||
混流式水轮机 | 弗朗西斯水轮机 | 叶片截面为翼型,叶片垂直布置,与上冠下环相连 | 水流沿径向流入,轴向流出 | 20~700 |
轴流式水轮机 | 卡普兰水轮机 | 叶片结构为螺旋桨式,并且可调桨叶角度 | 水流沿轴向流入,轴向流出 | 200~850 |
斜流式水轮机 | — | 结构介于混流式与轴流式之间,桨叶倾斜布置 | 水流相对于轴线斜向流入 | 150~350 |
贯流式水轮机 | — | 转轮结构与轴流式类似,流道一般为直线状 | 水流在流道内沿轴向流动 | 1~25 |
冲击式水轮机 | ||||
斜击式水轮机 | — | 喷嘴与桨叶呈一夹角 | 射流沿斜向冲击叶轮叶片 | 20~300 |
切击式水轮机 | 佩尔顿水轮机 | 叶片结构为双碗型,喷嘴与桨叶呈切向布置 | 射流沿切向冲击叶轮叶片 | 40~1700 |
双击式水轮机 | — | 包含喷嘴和叶轮,结构介于冲击式与反击式之间 | 运行过程中存在两次冲击过程 | 5~100 |
水轮机分类 | 现代常用形式 | 结构描述 | 特点 | 水头范围/m |
---|---|---|---|---|
反击式水轮机 | ||||
混流式水轮机 | 弗朗西斯水轮机 | 叶片截面为翼型,叶片垂直布置,与上冠下环相连 | 水流沿径向流入,轴向流出 | 20~700 |
轴流式水轮机 | 卡普兰水轮机 | 叶片结构为螺旋桨式,并且可调桨叶角度 | 水流沿轴向流入,轴向流出 | 200~850 |
斜流式水轮机 | — | 结构介于混流式与轴流式之间,桨叶倾斜布置 | 水流相对于轴线斜向流入 | 150~350 |
贯流式水轮机 | — | 转轮结构与轴流式类似,流道一般为直线状 | 水流在流道内沿轴向流动 | 1~25 |
冲击式水轮机 | ||||
斜击式水轮机 | — | 喷嘴与桨叶呈一夹角 | 射流沿斜向冲击叶轮叶片 | 20~300 |
切击式水轮机 | 佩尔顿水轮机 | 叶片结构为双碗型,喷嘴与桨叶呈切向布置 | 射流沿切向冲击叶轮叶片 | 40~1700 |
双击式水轮机 | — | 包含喷嘴和叶轮,结构介于冲击式与反击式之间 | 运行过程中存在两次冲击过程 | 5~100 |
装备类型 | 应用场合 | 存在问题 | 优化方法/解决方案 |
---|---|---|---|
水轮机 | 水能发电 | 超低水头利用效率较低 | 使用碳纤维增强热塑性材料叶片[ |
水力取风冷却塔 | 冷却塔 | 效率较低,振动严重 | 设计专用混流式水轮机[ |
水力风机 | 船舶消防除烟防爆 | 效率较低 | — |
风力机 | 风能发电 | 启动过程存在动态失速 | 使用4D打印叶片及仿生叶片自动调节叶片攻角[ |
震荡水柱型波能转换器 | 波浪能发电 | 启动过程存在动态失速 | 被动流动控制方法[ |
液力透平 | 压力能回收 | 缺少流量控制系统,选择方法及性能曲线预测不够成熟 | 可变操作策略,不同转速流量关系形成数据库,拟合最优曲线[ |
透平膨胀机 | 制冷及能量回收 | 小型膨胀机中微型叶轮加工复杂 | 使用复合材料仿生轻量化叶轮[ |
旋转射流混合器 | 储罐混合 | 国产装备减速比大,防沉积效果差 | 增加液力阻尼器,设计超大减速比齿轮机构[ |
装备类型 | 应用场合 | 存在问题 | 优化方法/解决方案 |
---|---|---|---|
水轮机 | 水能发电 | 超低水头利用效率较低 | 使用碳纤维增强热塑性材料叶片[ |
水力取风冷却塔 | 冷却塔 | 效率较低,振动严重 | 设计专用混流式水轮机[ |
水力风机 | 船舶消防除烟防爆 | 效率较低 | — |
风力机 | 风能发电 | 启动过程存在动态失速 | 使用4D打印叶片及仿生叶片自动调节叶片攻角[ |
震荡水柱型波能转换器 | 波浪能发电 | 启动过程存在动态失速 | 被动流动控制方法[ |
液力透平 | 压力能回收 | 缺少流量控制系统,选择方法及性能曲线预测不够成熟 | 可变操作策略,不同转速流量关系形成数据库,拟合最优曲线[ |
透平膨胀机 | 制冷及能量回收 | 小型膨胀机中微型叶轮加工复杂 | 使用复合材料仿生轻量化叶轮[ |
旋转射流混合器 | 储罐混合 | 国产装备减速比大,防沉积效果差 | 增加液力阻尼器,设计超大减速比齿轮机构[ |
装备类型 | 几何维度 | 流体驱动旋转模拟实现方法 | 湍流模型 | 旋转区域网格 | 多相流模型 | 网格数量 | 参考文献 |
---|---|---|---|---|---|---|---|
垂直轴风机 | 二维/三维 | CFX表达式语言 | 标准k-ε模型 | 变形网格 | — | 1.36×105(二维) 7.9×106(三维) | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 未提及 | [ |
垂直轴风机 | 二维/三维 | Fluent六自由度模型 | 剪切应力输运k-ω模型 | 滑移网格 | — | 129450(二维) 1512783(三维) | [ |
垂直轴风机 | 二维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 动网格 | — | 1.40×105 | [ |
达里厄型垂直轴风机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 未提及 | — | 2×105 | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 9.8×104 | [ |
佩尔顿水轮机 | 二维/三维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 滑移网格 | 流体体积法 | 20000(二维) 1500000(三维) | [ |
震荡水柱冲击式水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 1750000 | [ |
水平轴潮流能水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 17250000 | [ |
高水基过滤器 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 未提及 | 未提及 | 4.9×106~6.9×106 | [ |
涡轮流量计 | 三维 | Fluent六自由度模型 | 雷诺应力模型 | 未提及 | — | 未提及 | [ |
井下涡轮 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 滑移网格 | — | 400000 | [ |
水平轴风机 | 三维 | Fluent六自由度模型 | 标准k-ε模型 | 动网格 | — | 689820 | [ |
装备类型 | 几何维度 | 流体驱动旋转模拟实现方法 | 湍流模型 | 旋转区域网格 | 多相流模型 | 网格数量 | 参考文献 |
---|---|---|---|---|---|---|---|
垂直轴风机 | 二维/三维 | CFX表达式语言 | 标准k-ε模型 | 变形网格 | — | 1.36×105(二维) 7.9×106(三维) | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 未提及 | [ |
垂直轴风机 | 二维/三维 | Fluent六自由度模型 | 剪切应力输运k-ω模型 | 滑移网格 | — | 129450(二维) 1512783(三维) | [ |
垂直轴风机 | 二维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 动网格 | — | 1.40×105 | [ |
达里厄型垂直轴风机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 未提及 | — | 2×105 | [ |
垂直轴水轮机 | 二维 | Fluent用户自定义函数 | 剪切应力输运k-ω模型 | 滑移网格 | — | 9.8×104 | [ |
佩尔顿水轮机 | 二维/三维 | Fluent用户自定义函数 | 重整化数群k-ε模型 | 滑移网格 | 流体体积法 | 20000(二维) 1500000(三维) | [ |
震荡水柱冲击式水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 1750000 | [ |
水平轴潮流能水轮机 | 三维 | Fluent用户自定义函数 | 标准k-ε模型 | 滑移网格 | — | 17250000 | [ |
高水基过滤器 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 未提及 | 未提及 | 4.9×106~6.9×106 | [ |
涡轮流量计 | 三维 | Fluent六自由度模型 | 雷诺应力模型 | 未提及 | — | 未提及 | [ |
井下涡轮 | 三维 | Fluent六自由度模型 | 可实现k-ε模型 | 滑移网格 | — | 400000 | [ |
水平轴风机 | 三维 | Fluent六自由度模型 | 标准k-ε模型 | 动网格 | — | 689820 | [ |
模拟方法 | 应用场合 | 优势 | 不足 |
---|---|---|---|
主动旋转模拟方法 | 特定转速或稳定状态模拟 | 计算成本相对较低,主动旋转模拟模型成熟 | 无法真实反映流场信息,忽略了流体流动与叶片间耦合关系 |
被动旋转模拟方法 | 运行全过程模拟(主要用于启动过程) | 能真实完整反映流场信息 | 发展较晚,实现手段有限,计算成本相对较高,目前以二维模拟为主 |
模拟方法 | 应用场合 | 优势 | 不足 |
---|---|---|---|
主动旋转模拟方法 | 特定转速或稳定状态模拟 | 计算成本相对较低,主动旋转模拟模型成熟 | 无法真实反映流场信息,忽略了流体流动与叶片间耦合关系 |
被动旋转模拟方法 | 运行全过程模拟(主要用于启动过程) | 能真实完整反映流场信息 | 发展较晚,实现手段有限,计算成本相对较高,目前以二维模拟为主 |
1 | 赖喜德,徐永. 叶片式流体机械动力学分析及应用[M]. 北京: 科学出版社, 2017. |
LAI Xide, XU Yong. Dynamics analysis and application of turbomachinery[M]. Beijing: Science Press, 2017. | |
2 | 向伟. 流体机械[M]. 西安: 西安电子科技大学出版社, 2016: 2. |
XIANG Wei. Fluid Machinery[M]. Xi’an: Xidian University Press, 2016: 2. | |
3 | LEIJON J, BOSTRÖM C. Freshwater production from the motion of ocean waves—A review[J]. Desalination, 2018, 435: 161-171. |
4 | KUN L C, SENTZ R H, 胡宝福. 空气分离和液化装置中的高效率透平膨胀机[J]. 深冷技术, 1987(2): 11-18. |
KUN L C, SENTZ R H, HU Baofu. High efficiency turbine expander in air separation and liquefaction plant[J]. Cryogenic Technology, 1987(2): 11-18. | |
5 | WAN Dongdong, QU Yanpeng, CHEN Songying, et al. Research on the features of gasoline mixture flow field with rotary jet mixing[C]//LIU G R, HAN X, Li Z R. Proceedings at the 8th ICCM2017. Guilin, Guangxi: Scientech Publisher LLC, 2017: 416-425. |
6 | GUO Suna, SUN Lijun, ZHANG Tao, et al. Analysis of viscosity effect on turbine flowmeter performance based on experiments and CFD simulations[J]. Flow Measurement and Instrumentation, 2013, 34: 42-52. |
7 | SABOOHI Z, SORKHKHAH S, SHAKERI H. Developing a model for prediction of helical turbine flowmeter performance using CFD[J]. Flow Measurement and Instrumentation, 2015, 42: 47-57. |
8 | VIOLLET P L. From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions[J]. Comptes Rendus Mécanique, 2017, 345(8): 570-580. |
9 | SHOURANGIZ-HAGHIGHI A, HAGHNEGAHDAR M A, WANG L, et al. State of the art in the optimisation of wind turbine performance using CFD[J]. Archives of Computational Methods in Engineering, 2020, 27(2): 413-431. |
10 | IRANZO A. CFD applications in energy engineering research and simulation: an introduction to published reviews[J]. Processes, 2019, 7(12): 883. |
11 | LETCHER T M. Future energy: improved, sustainable and clean options for our planet[M]. New York: Elsevier, 2013: 218-330. |
12 | CHITRAKAR S, SOLEMSLIE B W, NEOPANE H P, et al. Review on numerical techniques applied in impulse hydro turbines[J]. Renewable Energy, 2020, 159: 843-859. |
13 | RANJAN R K, ALOM N, SINGH J, et al. Performance investigations of cross flow hydro turbine with the variation of blade and nozzle entry arc angle[J]. Energy Conversion and Management, 2019, 182: 41-50. |
14 | OKOT D K. Review of small hydropower technology[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 515-520. |
15 | JOŠT D, ŠKERLAVAJ A, LIPEJ A. Improvement of efficiency prediction for a kaplan turbine with advanced turbulence models[J]. Strojniški Vestnik, 2014, 60(2): 124-134. |
16 | ABBAS A I, QANDIL M D, AL-HADDAD M, et al. Investigation of horizontal micro kaplan hydro turbine performance using multi-disciplinary design optimization[J]. Journal of Energy Resources Technology, 2020, 142(5): 052101. |
17 | LOOTS I, DIJK M VAN, BARTA B, et al. A review of low head hydropower technologies and applications in a South African context[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1254-1268. |
18 | SAFDAR I, SULTAN S, AHMAD RAZA H, et al. Empirical analysis of turbine and generator efficiency of a pico hydro system[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100605. |
19 | JAIN S V, PATEL R N. Investigations on pump running in turbine mode: a review of the state-of-the art[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 841-868. |
20 | LI Huidong, ZHOU Daqing, MARTINEZ J J, et al. Design and performance of composite runner blades for ultra low head turbines[J]. Renewable Energy, 2019, 132: 1280-1289. |
21 | 张飞狂. “免风机电机”水力取风冷却塔的设计和应用[J]. 给水排水, 2000, 26(1): 98-100. |
ZHANG Feikuang. Design and application of cooling tower with hydraulic turbine driven fan[J]. Water & Wastewater Engineering, 2000, 26(1): 98-100. | |
22 | 周波, 王志成, 周长西. 水力通风冷却塔的发展与应用现状[J]. 工业用水与废水, 2010, 41(3): 73-75. |
ZHOU Bo, WANG Zhicheng, ZHOU Changxi. Development and application status of hydraulic phoenix cooling tower[J]. Industrial Water & Wastewater, 2010, 41(3): 73-75. | |
23 | 白欢欢. 水力风机的数值模拟和设计研究[D]. 杭州: 浙江大学, 2014. |
BAI Huanhuan. Numerical simulation and design study of water driven fan[D]. Hangzhou: Zhejiang University, 2014. | |
24 | EBERHARDT A H. Water driven fan system for firefighting: US4907654[P]. 1990-03-13. |
25 | 卢宇鹏, 黄锐, 李亚威, 等. 水力通风换热机设计及其在封闭高温高湿环境中的应用[J]. 黄金, 2011, 32(2): 41-45. |
LU Yupeng, HUANG Rui, LI Yawei, et al. Design and applications of a hydraulic-driving fan & heat exchanger in closed high temperature and humidity environment[J]. Gold, 2011, 32(2): 41-45. | |
26 | 赵丹平, 徐宝清. 风力机设计理论及方法[M]. 北京:北京大学出版社, 2012: 1-11. |
ZHAO Danping, XU Baoqing. Theory and method of wind turbine design[M]. Beijing: Peking University Press, 2012: 1-11. | |
27 | LI Jinjiang, WANG Guandao, LI Zhiheng, et al. A review on development of offshore wind energy conversion system[J]. International Journal of Energy Research, 2020, 44(12): 9283-9297. |
28 | CHU Y J, LAM H F, PENG H Y. Numerical investigation of the power and self-start performance of a folding-blade horizontal axis wind turbine with a downwind configuration[J]. International Journal of Green Energy, 2022, 19(1): 28-51. |
29 | DUMITRESCU H, CARDOŞ V, MĂLĂEL I. The physics of starting process for vertical axis wind turbines[M]. Cham: Springer International Publishing, 2015: 69-81. |
30 | CHONG W T, MUZAMMIL W K, ONG H C, et al. Performance analysis of the deflector integrated cross axis wind turbine[J]. Renewable Energy, 2019, 138: 675-690. |
31 | CHONG W T, MUZAMMIL W K, WONG K H, et al. Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design[J]. Applied Energy, 2017, 207: 78-95. |
32 | CHU Y J, CHONG W T. A biomimetic wind turbine inspired by Dryobalanops aromatica seed: numerical prediction of rigid rotor blade performance with OpenFOAM® [J]. Computers & Fluids, 2017, 159: 295-315. |
33 | MOMENI F, SABZPOUSHAN S, VALIZADEH R, et al. Plant leaf-mimetic smart wind turbine blades by 4D printing[J]. Renewable Energy, 2019, 130: 329-351. |
34 | FALCÃO A F D O. Wave energy utilization: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 899-918. |
35 | SHEHATA A S, XIAO Q, SAQR K M, et al. Passive flow control for aerodynamic performance enhancement of airfoil with its application in Wells turbine—Under oscillating flow condition[J]. Ocean Engineering, 2017, 136(15): 31-53. |
36 | SAMRAT N H, AHMAD N, CHOUDHURY I A. Prospect of stand-alone wave-powered water desalination system[J]. Desalination and Water Treatment, 2016, 57(1): 51-57. |
37 | CUI Ying, LIU Zhen. Effects of solidity ratio on performance of OWC impulse turbine[J]. Advances in Mechanical Engineering, 2015, 7(1): 121373. |
38 | DREW B, PLUMMER A R, SAHINKAYA M N. A review of wave energy converter technology[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(8): 887-902. |
39 | 史广泰,苗森春. 液力透平理论、设计与优化[M]. 北京: 机械工业出版社, 2017: 1-2. |
SHI Guangtai, MIAO Senchun. Theory, design and optimization of hydraulic turbine[M]. Beijing: China Machine Press, 2017: 1-2. | |
40 | BANSAL P, MARSHALL N. Feasibility of hydraulic power recovery from waste energy in bio-gas scrubbing processes[J]. Applied Energy, 2010, 87(3): 1048-1053. |
41 | WILLIAMS A A. Pumps as turbines for low cost micro hydro power[J]. Renewable Energy, 1996, 9(1/2/3/4): 1227-1234. |
42 | WANG Tao, WANG Chuan, KONG Fanyu, et al. Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine[J]. Energy, 2017, 130: 473-485. |
43 | PUGLIESE F, DE PAOLA F, FONTANA N, et al. Performance of vertical-axis pumps as turbines[J]. Journal of Hydraulic Research, 2018, 56(4): 482-493. |
44 | LIU Yabin, HAN Yadong, TAN Lei, et al. Blade rotation angle on energy performance and tip leakage Vortex in a mixed flow pump as turbine at pump mode[J]. Energy, 2020, 206: 118084 |
45 | SENGPANICH K, BOHEZ E L J, THONGKRUER P, et al. New mode to operate centrifugal pump as impulse turbine[J]. Renewable Energy, 2019, 140: 983-993. |
46 | ANTWERPEN H J VAN, GREYVENSTEIN G P. Use of turbines for simultaneous pressure regulation and recovery in secondary cooling water systems in deep mines[J]. Energy Conversion and Management, 2005, 46(4): 563-575. |
47 | RAJA W A, PIAZZA R W. Reverse running centrifugal pumps as hydraulic power recovery turbines for seawater reverse osmosis systems[J]. Desalination, 1981, 38: 123-134. |
48 | MOHAMED E S, PAPADAKIS G, MATHIOULAKIS E, et al. An experimental comparative study of the technical and economic performance of a small reverse osmosis desalination system equipped with an hydraulic energy recovery unit[J]. Desalination, 2006, 194(1/2/3): 239-250. |
49 | AMELIO M, BARBARELLI S, SCHINELLO D. Review of methods used for selecting pumps as turbines (PATs) and predicting their characteristic curves[J]. Energies, 2020, 13(23): 6341. |
50 | BINAMA M, KAN Kan, CHEN Huixiang, et al. A numerical investigation into the PAT hydrodynamic response to impeller rotational speed variation[J]. Sustainability, 2021, 13(14): 7998. |
51 | MACÍAS ÁVILA C A, SÁNCHEZ-ROMERO F J, LÓPEZ-JIMÉNEZ P A, et al. Definition of the operational curves by modification of the affinity laws to improve the simulation of PATs[J]. Water, 2021, 13(14): 1880. |
52 | YOON S, BINNS M, PARK S, et al. Development of energy-efficient processes for natural gas liquids recovery[J]. Energy, 2017, 128: 768-775. |
53 | 朱朝辉, 姚艳霞, 杨金焕, 等. 低温氦透平膨胀机的研究进展[J]. 低温与特气, 2003, 21(1): 1-6. |
ZHU Zhaohui, YAO Yanxia, YANG Jinhuan, et al. The research development of cryogenic helium turboexpander[J]. Low Temperature and Specialty Gases, 2003, 21(1): 1-6. | |
54 | REIF-ACHERMAN S. Several motivations, improved procedures, and different contexts: the first liquefactions of helium around the world[J]. International Journal of Refrigeration, 2009, 32(5): 738-762. |
55 | TALLURI L, LOMBARDI G. Simulation and design tool for ORC axial turbine stage[J]. Energy Procedia, 2017, 129: 277-284. |
56 | MORGESE G, FORNARELLI F, ORESTA P, et al. Fast design procedure for turboexpanders in pressure energy recovery applications[J]. Energies, 2020, 13(14): 3669. |
57 | KUMAR M, PANDA D, SAHOO R K, et al. Performance prediction, numerical and experimental investigation to characterize the flow field and thermal behavior of a cryogenic turboexpander[J]. Heat and Mass Transfer, 2020, 56(3): 1015-1036. |
58 | GAD-EL-HAK I. Fluid-structure interaction for biomimetic design of an innovative lightweight turboexpander[J]. Biomimetics, 2019, 4(1): 27. |
59 | 计光华. 透平膨胀机(修订本)[M]. 西安: 西安交通大学出版社, 1982: 9-11. |
JI G H. Turbine expander (revised version)[M]. Xi’an: Xi’an Jiaotong University Press, 1982: 9-11. | |
60 | SADYKOV R A, DAMINOV A Z, SOLOMIN I N, et al. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems[J]. Thermal Engineering, 2016, 63(5): 360-366. |
61 | HUANG Guangdai, SHU Gequn, TIAN Hua, et al. Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery[J]. Applied Energy, 2020, 257: 113997. |
62 | DELIGANT M, DANEL Q, BAKIR F. Performance assessment of a standard radial turbine as turbo expander for an adapted solar concentration ORC[J]. Energy Procedia, 2017, 129: 1085-1092. |
63 | 郑志国, 谭学军. 向心透平膨胀机气动设计软件的开发[C]//孙铁珩, 汝信. 自主创新振兴东北高层论坛暨第二届沈阳科学学术年会论文集. 沈阳: 沈阳出版社, 2005: 452-455. |
ZHENG Z G, TAN X J. Development of aerodynamic design software for centripetal turbine expander[C]//SUN Tieheng, RU Xin. Proceedings of Independent Innovation Revitalization Northeast High-level Forum and the Second Shenyang Scientific Academic Annual Conference. Shenyang: Shenyang Publishing House, 2005: 452-455. | |
64 | KUCZYŃSKI S, ŁACIAK M, OLIJNYK A, et al. Techno-economic assessment of turboexpander application at natural gas regulation stations[J]. Energies, 2019, 12(4): 755. |
65 | HOWARD C, OOSTHUIZEN P, PEPPLEY B. An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations[J]. Applied Thermal Engineering, 2011, 31(13): 2165-2170. |
66 | CHEN Songying, XIANG Longhao, QU Yanpeng. Numerical investigation on the features of gasoline mixture flow field with rotary jet mixing[J]. Journal of Beijing Institute of Technology, 2018, 27(3): 399-405. |
67 | 王强强, 陈家庆, 丁国栋, 等. 原油储罐防沉积用旋转喷射搅拌器研发进展[J]. 油气储运, 2018, 37(2): 135-142. |
WANG Qiangqiang, CHEN Jiaqing, DING Guodong, et al. Development progress of rotary jet mixer for the anti-deposition of crude oil tanks[J]. Oil & Gas Storage and Transportation, 2018, 37(2): 135-142. | |
68 | 田艳丽, 黄列群, 潘东杰, 等. 旋转射流搅拌器全场数值模拟分析[J]. 机电工程, 2008, 25(10): 86-90. |
TIAN Yanli, HUANG Liequn, PAN Dongjie, et al. Full flow numerical simulation and analysis of rotary jet mixing system[J]. Mechanical & Electrical Engineering Magazine, 2008, 25(10): 86-90. | |
69 | RAHIMI M, PARVAREH A. CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank[J]. Computers & Chemical Engineering, 2007, 31(7): 737-744. |
70 | 王军丽. 液力驱动旋转射流搅拌器内部流动数值仿真及水力特性研究[D]. 杭州: 浙江大学, 2007. |
WANG Junli. Numerical simulation and hydraulic characteristics study on rotary jet mixing system driven by liquid[D]. Hangzhou: Zhejiang University, 2007. | |
71 | RAHIMI M, PARVAREH A. Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank[J]. Chemical Engineering Journal, 2005, 115(1/2): 85-92. |
72 | 李洪河, 王红艳, 杨光发, 等. RJM喷射搅拌混合器在仪征15万m3储油罐上的应用[J]. 石油化工建设, 2006, 28(5): 38-39. |
LI Honghe, WANG Hongyan, YANG Guangfa, et al. Introduction of the application of RJM spray mixing mill in the first 150,000 m3 storage in China[J]. Petroleum and Chemical Construction, 2006, 28(5): 38-39. | |
73 | RADTKE R, GLOWKA D, RAI M M, et al. High-power turbodrill and drill bit for drilling with coiled tubing[R]. Office of Scientific and Technical Information (OSTI), 2008. |
74 | MOKARAMIAN A, RASOULI V, CAVANOUGH G, et al. Turbodrill design and performance analysis[J]. Journal of Applied Fluid Mechanics, 2015, 8(3): 377-390. |
75 | ZHANG Delong, WANG Yu, SHA Junjie, et al. Performance prediction of a turbodrill based on the properties of the drilling fluid[J]. Machines, 2021, 9(4): 76. |
76 | SEALE R A, CONROY D. PDC bits Run on turbodrills: the history, facts, and current developments[C]//All Days. June 20-23, 2005. Rio de Janeiro, Brazil. SPE, 2005. |
77 | SAHNOUNE K, BENBRIK A, OUSSAMA R, et al. Flow simulation and performance analysis of a drilling turbine[J]. Journal of Engineering Research, 2020, 8(3): 255-270. |
78 | ZHEN Wang, TAO Zhang. Computational study of the tangential type turbine flowmeter[J]. Flow Measurement and Instrumentation, 2008, 19(5): 233-239. |
79 | 陈勇, 张合, 马少杰, 等. 水下测速涡轮传感器动态实验研究[J]. 传感器与微系统, 2014, 33(7): 42-44, 48. |
CHEN Yong, ZHANG He, MA Shaojie, et al. Dynamic experiment study on underwater turbine velocity measurement sensor[J]. Transducer and Microsystem Technologies, 2014, 33(7): 42-44, 48. | |
80 | 沈德璋, 张合, 李豪杰. 一种小型水下高速运动体的自主测速方法[J]. 仪器仪表学报, 2012, 33(12): 2697-2702. |
SHEN Dezhang, ZHANG He, LI Haojie. Autonomous velocity measurement method for small underwater high velocity moving body[J]. Chinese Journal of Scientific Instrument, 2012, 33(12): 2697-2702. | |
81 | HARIRI S, HASHEMABADI S H, NOROOZI S, et al. Analysis of operational parameters, distorted flow and damaged blade effects on accuracy of industrial crude oil turbine flow meter by CFD techniques[J]. Journal of Petroleum Science and Engineering, 2015, 127: 318-328. |
82 | HSU C Y, LIANG C C, TENG T L, et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering, 2013, 72: 98-106. |
83 | TEIMOURIAN H, SHABGARD M R, MOMBER A W. De-painting with high-speed water jets: paint removal process and substrate surface roughness[J]. Progress in Organic Coatings, 2010, 69(4): 455-462. |
84 | 张宏, 刘峰, 张婉茹, 等. 基于多孔射流冲击的高水基过滤器反冲洗技术研究[J]. 煤炭学报, 2019, 44(S2): 784-790. |
ZHANG Hong, LIU Feng, ZHANG Wanru, et al. Research on backwashing technology of high water-based filter based on multihole jet impact[J]. Journal of China Coal Society, 2019, 44(S2):784-790. | |
85 | 车晓红, 成立, 汤方平. 高精度水力机械试验台流量原位标定研究进展[J]. 南水北调与水利科技, 2009, 7(5): 49-51, 65. |
CHE Xiaohong, CHENG Li, TANG Fangping. Review on the flow calibration of high-precision-hydromachine-test-rig[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5): 49-51, 65. | |
86 | FALCÃO A F O, HENRIQUES J C C. Model-prototype similarity of oscillating-water-column wave energy converters[J]. International Journal of Marine Energy, 2014, 6: 18-34. |
87 | SANG L Q, LI Q A, CAI C A, et al. Wind tunnel and numerical study of a floating offshore wind turbine based on the cyclic pitch control[J]. Renewable Energy, 2021, 172: 453-464. |
88 | BAYATI I, BELLOLI M, BERNINI L, et al. Aerodynamic design methodology for wind tunnel tests of wind turbine rotors[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 217-227. |
89 | AARAJ Y, MORTADA S, CLODIC D, et al. Design of a turgo two-phase turbine runner [C]//International refrigeration and air condition conference. West Lafayette: Purdue University. 2014: 2169. |
90 | ZENG Chongji, XIAO Yexiang, LUO Yongyao, et al. Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation[J]. Renewable Energy, 2018, 125: 270-282. |
91 | LIU Bingcheng, WANG Shaoyi, ZHANG Mengmeng, et al. Simulation study on the flow field of guide vane and impeller of turbo expander[J]. Energy Science & Engineering, 2019, 7(6): 2306-2320. |
92 | ZHU Jianyang, HUANG Hailin, SHEN Hao. Self-starting aerodynamics analysis of vertical axis wind turbine[J]. Advances in Mechanical Engineering, 2015, 7(12): 1-12. |
93 | UNTAROIU A, WOOD H G, ALLAIRE P E, et al. Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach[J]. Journal of Solar Energy Engineering, 2011, 133(4): 041010. |
94 | LE T Q, LEE K S, PARK J S, et al. Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(2): 257-268. |
95 | 蒋勇其, 程永光, 尤建锋. 水斗式水轮机启动过程CFD模拟分析[J]. 水电能源科学, 2017, 35(1): 172-176. |
JIANG Yongqi, CHENG Yongguang, YOU Jianfeng. CFD simulation of starting process of pelton turbine[J]. Water Resources and Power, 2017, 35(1): 172-176. | |
96 | LIU Zhen, QU Hengliang, SHI Hongda. Numerical study on self-starting performance of darrieus vertical axis turbine for tidal stream energy conversion[J]. Energies, 2016, 9(10): 789. |
97 | LIU Zhen, CUI Ying, XU Chuanli, et al. Transient simulation of OWC impulse turbine based on fully passive flow-driving model[J]. Renewable Energy, 2018, 117: 459-473. |
98 | 张永胜, 于小丽, 刘彦军. 6DOF模型在涡轮流量计流体仿真中的应用[J]. 计量科学与技术, 2020 (8): 55-57, 64. |
ZHANG Yongsheng, YU Xiaoli, LIU Yanjun. Application of 6DOF model in fluid simulation of turbine flowmeter[J]. Metrology Science and Technology, 2020(8): 55-57, 64. | |
99 | 张学伟, 张亮, 李志川, 等. 垂直轴自由变偏角水轮机的多体耦合数值求解方法[J]. 计算力学学报, 2013, 30(3): 370-375. |
ZHANG Xuewei, ZHANG Liang, LI Zhichuan, et al. Multi-body coupling numerical algorithms for free variable-pitch vertical axis tidal turbine[J]. Chinese Journal of Computational Mechanics, 2013, 30(3): 370-375. | |
100 | 孙科, 张亮, 何环宇. 三叶片垂直轴水轮机自启动性能数值计算[J]. 哈尔滨工业大学学报, 2016, 48(4): 144-148. |
SUN Ke, ZHANG Liang, HE Huanyu. Numerical computation on self-starting position of a three-blade vertical axis hydro-turbine[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 144-148. | |
101 | 陈文鹏, 刘胤超, 陈立卫. 基于UDF的水平轴潮流能水轮机被动旋转水动力性能研究[J]. 海洋工程, 2018, 36(2): 119-126. |
CHEN Wenpeng, LIU Yinchao, CHEN Liwei. Study on hydrodynamic performance of horizontal tidal turbine rotating passively based on UDF[J]. The Ocean Engineering, 2018, 36(2): 119-126. | |
102 | ZENG Yijin, WANG Jin, DING Shidong, et al. Simulation study on dynamics of hydraulic turbines used in drilling engineering[J]. Shock and Vibration, 2020, 2020: 1-14. |
103 | HSU C H, CHEN Junliang, YUAN Shanchi, et al. CFD simulations on the rotor dynamics of a horizontal axis wind turbine activated from stationary[J]. Applied Mechanics, 2021, 2(1): 147-158. |
104 | SITTE D, SUTANTO H. Performance analysis of hydraulic machines using impellers made from conventional steel and 3D printing co-polymer[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1115(1): 012049. |
105 | HAN Nuomin, ZHAO Dan, SCHLUTER J U, et al. Performance evaluation of 3D printed miniature electromagnetic energy harvesters driven by air flow[J]. Applied Energy, 2016, 178: 672-680. |
106 | CORTES GARCIA G E, SCHAAF J VAN DER, KISS A A. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
107 | CHU Guangwen, FEI Jia, CAI Yong, et al. Removal of SO2 with sodium sulfite solution in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2329-2335. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[3] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[4] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[5] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[6] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[7] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[10] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[11] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[12] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[15] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |