Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2429-2440.DOI: 10.16085/j.issn.1000-6613.2021-1134
• Industrial catalysis • Previous Articles Next Articles
ZHANG Lei1,2(), WANG Haiying1,2, HAN Hongjing1,2(), CHEN Yanguang1,2, WANG Chenghao1,2
Received:
2021-05-28
Revised:
2021-07-06
Online:
2022-05-24
Published:
2022-05-05
Contact:
HAN Hongjing
张雷1,2(), 王海英1,2, 韩洪晶1,2(), 陈彦广1,2, 王程昊1,2
通讯作者:
韩洪晶
作者简介:
张雷(1997—),男,硕士研究生,研究方向为催化材料合成及生物质资源化利用。E-mail:基金资助:
CLC Number:
ZHANG Lei, WANG Haiying, HAN Hongjing, CHEN Yanguang, WANG Chenghao. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440.
张雷, 王海英, 韩洪晶, 陈彦广, 王程昊. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1134
1 | JIANG W K, WU S B, LUCIA L A, et al. Effect of side-chain structure on hydrothermolysis of lignin model compounds[J]. Fuel Processing Technology, 2017, 166: 124-130. |
2 | SHAFAGHAT H, REZAEI P S, RO D, et al. In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer[J]. Journal of Industrial and Engineering Chemistry, 2017, 54: 447-453. |
3 | BAJWA D S, POURHASHEM G, ULLAH A H, et al. A concise review of current lignin production, applications, products and their environmental impact[J]. Industrial Crops and Products, 2019, 139: 111526. |
4 | RINALDI R, JASTRZEBSKI R, CLOUGH M T, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215. |
5 | RUBIN E M. Genomics of cellulosic biofuels[J]. Nature, 2008, 454(7206): 841-845. |
6 | 简雅婷, 余强, 陈小燕, 等. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116. |
JIAN Yating, YU Qiang, CHEN Xiaoyan, et al. Progress in the preparation of liquid biofuels from lignin[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 109-116. | |
7 | KIBET J, KHACHATRYAN L, DELLINGER B. Molecular products and radicals from pyrolysis of lignin[J]. Environmental Science & Technology, 2012, 46(23): 12994-13001. |
8 | MULLEN C A, BOATENG A A. Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Processing Technology, 2010, 91(11): 1446-1458. |
9 | RUDDY D A, SCHAIDLE J A, FERRELL J R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds[J]. Green Chem., 2014, 16(2): 454-490. |
10 | XU L J, ZHANG Y, FU Y. Advances in upgrading lignin pyrolysis vapors by ex situ catalytic fast pyrolysis[J]. Energy Technology, 2017, 5(1): 30-51. |
11 | LIN Y C, HUBER G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J]. Energy Environ. Sci., 2009, 2(1): 68-80. |
12 | SINHA P, DATAR A, JEONG C, et al. Surface area determination of porous materials using the brunauer-emmett-teller (BET) method: limitations and improvements[J]. The Journal of Physical Chemistry C, 2019, 123(33): 20195-20209. |
13 | NADERI Majid. Chapter fourteen-surface area: Brunauer-Emmett-Teller (BET)[M] // Progress in Filtration and Separation, 2015: 585-608. |
14 | KUMAR A, KUMAR A, KUMAR J, et al. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry[J]. Bioresource Technology, 2019, 291: 121822. |
15 | SHI Z J, XU G F, DENG J, et al. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques[J]. Green Chemistry Letters and Reviews, 2019, 12(3): 235-243. |
16 | HAENSEL T, REINMÖLLER M, LORENZ P, et al. Valence band structure of cellulose and lignin studied by XPS and DFT[J]. Cellulose, 2012, 19(3): 1005-1011. |
17 | FARROKH N T, SUOPAJÄRVI H, SULASALMI P, et al. A thermogravimetric analysis of lignin char combustion[J]. Energy Procedia, 2019, 158: 1241-1248. |
18 | YU Y Q, LI X Y, SU L, et al. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts[J]. Applied Catalysis A: General, 2012, 447/448: 115-123. |
19 | KURNIA I, KARNJANAKOM S, BAYU A, et al. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Processing Technology, 2017, 167: 730-737. |
20 | MA Z Q, TROUSSARD E, BOKHOVEN J A VAN. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423/424: 130-136. |
21 | NAIR V, VINU R. Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 31-39. |
22 | LAZARIDIS P A, FOTOPOULOS A P, KARAKOULIA S A, et al. Catalytic fast pyrolysis of kraft lignin with conventional, mesoporous and nanosized ZSM-5 zeolite for the production of alkyl-phenols and aromatics[J]. Frontiers in Chemistry, 2018, 6: 295. |
23 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 3022-3028. |
WANG Yun, SHAO Shanshan, ZHANG Huiyan, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. | |
24 | KIM J Y, MOON J, LEE J H, et al. Conversion of phenol intermediates into aromatic hydrocarbons over various zeolites during lignin pyrolysis[J]. Fuel, 2020, 279: 118484. |
25 | PAYSEPAR H, VENKATESWARA RAO K T, YUAN Z S, et al. Production of phenolic chemicals from hydrolysis lignin via catalytic fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104842. |
26 | ZHAO Y, DENG L, LIAO B, et al. Aromatics production via catalytic pyrolysis of pyrolytic lignins from bio-oil[J]. Energy & Fuels, 2010, 24(10): 5735-5740. |
27 | HUANG J, LONG W, AGRAWAL P K, et al. Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H-Y zeolites[J]. The Journal of Physical Chemistry C, 2009, 113(38): 16702-16710. |
28 | YUNG M M, STARACE A K, MUKARAKATE C, et al. Biomass catalytic pyrolysis on Ni/ZSM-5: effects of nickel pretreatment and loading[J]. Energy & Fuels, 2016, 30(7): 5259-5268. |
29 | ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B: Environmental, 2012, 127: 281-290. |
30 | PRIHARTO N, GHYSELS S, PALA M, et al. Ex situ catalytic fast pyrolysis of lignin-rich digested stillage over Na/ZSM-5, H/ZSM-5, and Fe/ZSM-5[J]. Energy & Fuels, 2020, 34(10): 12710-12723. |
31 | CHENG Y T, JAE J, SHI J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie International Edition, 2012, 51(6): 1387-1390. |
32 | FANCHIANG W L, LIN Y C. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. Applied Catalysis A: General, 2012, 419/420: 102-110. |
33 | DING Y L, WANG H Q, XIANG M, et al. The effect of Ni-ZSM-5 catalysts on catalytic pyrolysis and hydro-pyrolysis of biomass[J]. Frontiers in Chemistry, 2020, 8: 790. |
34 | YANG M F, SHAO J G, YANG Z X, et al. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: significance of Fe contents and temperature[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 259-265. |
35 | CHE Q F, YANG M J, WANG X H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254. |
36 | WANG J X, CAO J P, ZHAO X Y, et al. Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride[J]. Bioresource Technology, 2019, 278: 116-123. |
37 | HUANG M, MA Z Q, ZHOU B L, et al. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresource Technology, 2020, 301: 122754. |
38 | TANG S S, ZHANG C S, XUE X F, et al. Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 86-95. |
39 | OH D, CHO E B, LEE I G, et al. In-situ upgrading of organosolv lignin- and cellulose-derived pyrolyzates over Ce-MCM-41 catalyst[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(2): 1162-1165. |
40 | LEE H W, LEE I G, PARK S H, et al. Application of mesoporous Al-MCM-48 material to the conversion of lignin[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(4): 2990-2995. |
41 | KIM Y M, KANG B S, HAN T U, et al. Catalytic pyrolysis of organosolv and klason lignin over Al-SBA-15[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(2): 1423-1426. |
42 | WANG S Q, LI Z H, YI W M, et al. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: synergistic effect and coke behaviour[J]. Renewable Energy, 2021, 163: 1673-1681. |
43 | KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites: a short review[J]. Chinese Journal of Catalysis, 2016, 37(4): 447-467. |
44 | ZHANG K, OSTRAAT M L. Innovations in hierarchical zeolite synthesis[J]. Catalysis Today, 2016, 264: 3-15. |
45 | 王日升, 彭鹏, 李婷婷, 等. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858. |
WANG Risheng, PENG Peng, LI Tingting, et al. Synthesis and application of hierarchial zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858. | |
46 | ZOU R G, WANG Y P, JIANG L, et al. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons[J]. Bioresource Technology, 2019, 289: 121609. |
47 | XUE S, LUO Z Y, WANG W B, et al. Preparation of aromatics from catalytic pyrolysis of enzymatic lignin over double-layer metal supported core-shell catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2020, 150: 104884. |
48 | NEUMANN G T, HICKS J C. Novel hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass[J]. ACS Catalysis, 2012, 2(4): 642-646. |
49 | NOLTE M W, SHANKS B H. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis[J]. Energy Technology, 2017, 5(1): 7-18. |
50 | ZHANG Z M, HU X, LI J J, et al. Steam reforming of acetic acid over Ni/Al2O3 catalysts: correlation of nickel loading with properties and catalytic behaviors of the catalysts[J]. Fuel, 2018, 217: 389-403. |
51 | YU Z J, HU X, JIA P, et al. Steam reforming of acetic acid over nickel-based catalysts: the intrinsic effects of nickel precursors on behaviors of nickel catalysts[J]. Applied Catalysis B: Environmental, 2018, 237: 538-553. |
52 | ZHANG C T, HU X, GUO H Y, et al. Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 590-605. |
53 | 董志国, 刘紫灏, 李建, 等. 超滤黑液木质素催化热解特性研究[J]. 太阳能学报, 2020, 41(2): 58-65. |
DONG Zhiguo, LIU Zihao, LI Jian, et al. Study on catalytic pyrolysis characteristics of lignin ultrafiltrated from black liquor[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 58-65. | |
54 | RYU H W, LEE H W, JAE J, et al. Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: effect of magnesium oxide catalyst[J]. Energy, 2019, 179: 669-675. |
55 | CHEN X, LI S J, LIU Z H, et al. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO[J]. Bioresource Technology, 2019, 287: 121493. |
56 | HENDRY A, ÅHLÉN M, FERNANDES T, et al. Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery[J]. Bioresource Technology, 2020, 317: 124008. |
57 | DONG Z G, YANG H P, CHEN P A, et al. Lignin characterization and catalytic pyrolysis for phenol-rich oil with TiO2-based catalysts[J]. Energy & Fuels, 2019, 33(10): 9934-9941. |
58 | LI S M, LUO Z Y, WANG W B, et al. Catalytic fast pyrolysis of enzymatic hydrolysis lignin over Lewis-acid catalyst niobium pentoxide and mechanism study[J]. Bioresource Technology, 2020, 316: 123853. |
59 | WANG H Y, HAN H J, SUN E H, et al. Production of aryl oxygen-containing compounds from catalytic pyrolysis of bagasse lignin over LaTi x Fe1- x O3 [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1939-1944. |
60 | 韩洪晶, 葛芹, 陈彦广, 等. Ca1- x Pr x FeO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2020, 41(2): 331-340. |
HAN Hongjing, GE Qin, CHEN Yanguang, et al. Production of phenolic compounds from bagasse lignin via catalytic pyrolysis of Ca1- x Pr x FeO3 [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 331-340. | |
61 | LIU Y, WANG Y, GUO F Q, et al. Characterization of the gas releasing behaviors of catalytic pyrolysis of rice husk using potassium over a micro-fluidized bed reactor[J]. Energy Conversion and Management, 2017, 136: 395-403. |
62 | HOLMELID B, BARTH T, BRUSLETTO R, et al. Production of monomeric phenols by formic acid assisted hydrous liquefaction of lignin[J]. Biomass and Bioenergy, 2017, 105: 298-309. |
63 | WANG W L, WANG M, HUANG J L, et al. Formate-assisted analytical pyrolysis of kraft lignin to phenols[J]. Bioresource Technology, 2019, 278: 464-467. |
64 | GENG J, WANG W L, YU Y X, et al. Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis[J]. Bioresource Technology, 2017, 227: 1-6. |
65 | PENG C N, ZHANG G Y, YUE J R, et al. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
66 | 高金锴, 李健, 汪宁, 等. K2CO3对秸秆类生物质热解气相产物析出特性及动力学研究[J]. 中国电机工程学报, 2020, 40(4): 1266-1273, 1417. |
GAO Jinkai, LI Jian, WANG Ning, et al. Intrinsic kinetics of precipitation of gas phase products from straw biomass pyrolysis[J]. Proceedings of the CSEE, 2020, 40(4): 1266-1273, 1417. | |
67 | WANG W L, REN X Y, LI L F, et al. Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin[J]. Fuel Processing Technology, 2015, 134: 345-351. |
68 | WANG W L, REN X Y, CHANG J M, et al. Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides[J]. Fuel Processing Technology, 2015, 138: 605-611. |
69 | HU J, SHEN D K, WU S L, et al. Insight into the effect of ZnCl2 on analytical pyrolysis behavior of cellulolytic enzyme corn stover lignin[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 444-450. |
70 | CUI Y, WANG W, CHANG J. Study on the product characteristics of pyrolysis lignin with calcium salt additives[J]. Materials, 2019, 12(10): 1609. |
71 | FANG Y, YIN L, YANG H P, et al. Catalytic mechanisms of potassium salts on pyrolysis of β-O-4 type lignin model polymer based on DFT study[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3969-3976. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[4] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[5] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[6] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[7] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[8] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[9] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[10] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[11] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[12] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[13] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[14] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[15] | GAO Shichao, WANG Shugang, HU Peiyu, ZHAO Yiming, WANG Jihong, SUN Yi, JIANG Shuang. Effect of zeolite packing height on thermal energy storage-release performance of reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5092-5100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |