Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5092-5100.DOI: 10.16085/j.issn.1000-6613.2022-2108
• Chemical processes and equipment • Previous Articles Next Articles
GAO Shichao1(), WANG Shugang1(), HU Peiyu1, ZHAO Yiming1, WANG Jihong1, SUN Yi1, JIANG Shuang2
Received:
2022-11-14
Revised:
2023-03-11
Online:
2023-11-11
Published:
2023-10-15
Contact:
WANG Shugang
高士超1(), 王树刚1(), 胡沛裕1, 赵一铭1, 王继红1, 孙毅1, 蒋爽2
通讯作者:
王树刚
作者简介:
高士超(1998—),男,博士研究生,研究方向为建筑节能与蓄热。E-mail:gaoshichao666@163.com。
基金资助:
CLC Number:
GAO Shichao, WANG Shugang, HU Peiyu, ZHAO Yiming, WANG Jihong, SUN Yi, JIANG Shuang. Effect of zeolite packing height on thermal energy storage-release performance of reactor[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5092-5100.
高士超, 王树刚, 胡沛裕, 赵一铭, 王继红, 孙毅, 蒋爽. 沸石堆积高度对反应器蓄放热性能的影响[J]. 化工进展, 2023, 42(10): 5092-5100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2108
序号 | 堆积高度 /mm | 脱附温度 /℃ | 吸附温度 /℃ | 吸附含湿量 /g·kg-1 | 吸附流速 /m·s-1 |
---|---|---|---|---|---|
1 | 60 | 142.2 | 21.8 | 14.8 | 0.292 |
2 | 80 | 142.8 | 22.1 | 15.1 | 0.295 |
3 | 100 | 143.5 | 21.9 | 15.0 | 0.289 |
4 | 120 | 142.3 | 22.0 | 14.9 | 0.291 |
5 | 140 | 143.9 | 21.9 | 15.0 | 0.291 |
序号 | 堆积高度 /mm | 脱附温度 /℃ | 吸附温度 /℃ | 吸附含湿量 /g·kg-1 | 吸附流速 /m·s-1 |
---|---|---|---|---|---|
1 | 60 | 142.2 | 21.8 | 14.8 | 0.292 |
2 | 80 | 142.8 | 22.1 | 15.1 | 0.295 |
3 | 100 | 143.5 | 21.9 | 15.0 | 0.289 |
4 | 120 | 142.3 | 22.0 | 14.9 | 0.291 |
5 | 140 | 143.9 | 21.9 | 15.0 | 0.291 |
传感器 | 精度 |
---|---|
Pt100热电阻 | ±0.1℃ |
湿度传感器 | ±0.26g/kg |
流量计 | ±0.1m3/h |
电子天平 | ±0.01g |
传感器 | 精度 |
---|---|
Pt100热电阻 | ±0.1℃ |
湿度传感器 | ±0.26g/kg |
流量计 | ±0.1m3/h |
电子天平 | ±0.01g |
19 | KUZNIK F, GONDRE D, JOHANNES K, et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings[J]. Renewable Energy, 2019, 132: 761-772. |
20 | LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. |
21 | CASEY S P, AYDIN D, ELVINS J, et al. Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage–Improving energy density utilisation through hygrodynamic & thermodynamic reactor design[J]. Energy Conversion and Management, 2017, 142: 426-440. |
22 | DAOU K, WANG R Z, YANG G Z, et al. Theoretical comparison of the refrigerating performances of a CaCl2 impregnated composite adsorbent to those of the host silica gel[J]. International Journal of Thermal Sciences, 2008, 47(1): 68-75. |
23 | SAPIENZA A, SANTAMARIA S, FRAZZICA A, et al. Dynamic study of adsorbers by a new gravimetric version of the Large Temperature Jump method[J]. Applied Energy, 2014, 113: 1244-1251. |
24 | HU P, WANG S, WANG J, et al. Thermal performance analysis of the sorption heat storage system with packed bed based on a spatially resolved 2D model[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101753. |
25 | R-J CLARK, GHOLAMIBOZANJANI G, WOODS J, et al. Experimental screening of salt hydrates for thermochemical energy storage for building heating application[J]. Journal of Energy Storage, 2022, 51: 104415. |
26 | KUZNIK F, GONDRE D, JOHANNES K, et al. Sensitivity analysis of a zeolite energy storage model: impact of parameters on heat storage density and discharge power density[J]. Renewable Energy, 2020, 149: 468-478. |
27 | ZHANG Y, DONG H, WANG R, et al. Air humidity assisted sorption thermal battery governed by reaction wave model[J]. Energy Storage Materials, 2020, 27: 9-16. |
28 | GONDRE D. Numerical modeling and analysis of heat and mass transfers in an adsorption heat storage tank: Influences of material properties, operating conditions and system design on storage performances[D]. Lyon: Lyon University, 2016: 8-14. |
29 | 章燕豪. 吸附作用[M]. 上海: 上海科学技术文献出版社, 1989: 46-51. |
ZHANG Yanhao. Adsorption[M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1989: 46-51. | |
30 | ZOU R P, YU A B. The packing of spheres in a cylindrical container: he thickness effect[J]. Chemical Engineering Science, 1995, 50(9): 1504-1507. |
31 | KLINE S, MCCLINTOCK F. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
32 | TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500. |
33 | RISTIĆ A, FISCHER F, HAUER A, et al. Improved performance of binder-free zeolite Y for low-temperature sorption heat storage[J]. Journal of Materials Chemistry A, 2018, 6(24): 11521-11530. |
34 | DYLAN A B. An experimental evaluation of fixed and fluidized beds of zeolite 13X for the application of compact thermal energy storage[D]. Ottawa: Carleton University, 2016: 66-69. |
35 | KÖLL R, VAN HELDEN W, ENGEL G, et al. An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings[J]. Solar Energy, 2017, 155: 388-397. |
36 | THU K, SAHA B B, CHUA K J, et al. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1111-1122. |
37 | LIM K, CHE J, LEE J. Experimental study on adsorption characteristics of a water and silica-gel based thermal energy storage (TES) system[J]. Applied Thermal Engineering, 2017, 110: 80-88. |
38 | COURBON E, D'ANS P, SKRYLNYK O, et al. New prominent lithium bromide-based composites for thermal energy storage[J]. Journal of Energy Storage, 2020, 32: 101699. |
39 | HU P, WANG S, WANG J, et al. Scale-up of open zeolite bed reactors for sorption energy storage: Theory and experiment[J]. Energy and Buildings, 2022, 264: 112077. |
40 | GAEINI M, VAN ALEBEEK R, SCAPINO L, et al. Hot tap water production by a 4kW sorption segmented reactor in household scale for seasonal heat storage[J]. Journal of Energy Storage, 2018, 17: 118-128. |
41 | JÄNCHEN J, HERZOG T H, GLEICHMANN K, et al. Performance of an open thermal adsorption storage system with Linde type A zeolites: Beads versus honeycombs[J]. Microporous and Mesoporous Materials, 2015, 207: 179-184. |
1 | TREIER M S, DESAI A, SCHMIDT F P. Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage[J]. Energy, 2020, 194: 116890. |
2 | XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103: 610-638. |
3 | 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616. |
LI Lin, HUANG Hongyu, DENG Lisheng, et al. Research progress of low-grade energy chemical heat storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616. | |
4 | SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale[J]. Applied Energy, 2017, 190: 920-948. |
5 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
6 | TATSIDJODOUNG P, LE PIERRÈS N, LUO L. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. |
7 | KRESE G, KOŽELJ R, BUTALA V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy and Buildings, 2018, 164: 239-253. |
8 | GUR I, SAWYER K, PRASHER R. Searching for a better thermal battery[J]. Science, 2012, 335(6075): 1454-1455. |
9 | 高士超, 王树刚, 胡沛裕, 等. 吸附蓄热材料性能研究进展[J]. 化工进展, 2021, 40(S2): 211-218. |
GAO Shichao, WANG Shugang, HU Peiyu, et al. The state of the art on performance of sorption heat storage materials[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 211-218. | |
10 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. |
11 | KUZNIK F, JOHANNES K, OBRECHT C. Chemisorption heat storage in buildings: State-of-the-art and outlook[J]. Energy and Buildings, 2015, 106: 183-191. |
12 | ZHANG Y N, WANG R Z, LI T X. Experimental investigation on an open sorption thermal storage system for space heating[J]. Energy, 2017, 141: 2421-2433. |
13 | SHIGEISHI R A, LANGFORD C H, HOLLEBONE B R. Solar energy storage using chemical potential changes associated with drying of zeolites[J]. Solar Energy, 1979, 23(6): 489-495. |
14 | VAN ALEBEEK R, SCAPINO L, BEVING M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333. |
15 | NONNEN T, PREIßLER H, KÖTT S, et al. Salt inclusion and deliquescence in salt/zeolite X composites for thermochemical heat storage[J]. Microporous and Mesoporous Materials, 2020, 303: 110239. |
16 | FINCK C, HENQUET E, VAN SOEST C, et al. Experimental results of a 3kWh thermochemical heat storage module for space heating application[J]. Energy Procedia, 2014, 48: 320-326. |
17 | ZETTL B, ENGLMAIR G, STEINMAURER G. Development of a revolving drum reactor for open-sorption heat storage processes[J]. Applied Thermal Engineering, 2014, 70(1): 42-49. |
18 | JOHANNES K, KUZNIK F, J-L HUBERT, et al. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings[J]. Applied Energy, 2015, 159: 80-86. |
42 | XU C, YU Z, XIE Y, et al. Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J]. Applied Thermal Engineering, 2018, 129: 250-259. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[3] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[4] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[7] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[8] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[9] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[10] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[11] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[12] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[15] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |