Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 2171-2179.DOI: 10.16085/j.issn.1000-6613.2021-0839
• Resources and environmental engineering • Previous Articles Next Articles
WANG Lin1(), PU Siqi1, WANG Mingxin1,2(), XUE Jinjuan1,2, HAN Ying1,2
Received:
2021-04-19
Revised:
2021-07-21
Online:
2022-04-25
Published:
2022-04-23
Contact:
WANG Mingxin
汪林1(), 蒲思淇1, 王明新1,2(), 薛金娟1,2, 韩莹1,2
通讯作者:
王明新
作者简介:
汪林(1993—),男,硕士研究生,主要研究方向为污染场地修复。E-mail:基金资助:
CLC Number:
WANG Lin, PU Siqi, WANG Mingxin, XUE Jinjuan, HAN Ying. Remediation of petroleum-contaminated soil by sodium percarbonate and its environmental effects[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2171-2179.
汪林, 蒲思淇, 王明新, 薛金娟, 韩莹. 过碳酸钠修复石油污染土壤及其环境效应[J]. 化工进展, 2022, 41(4): 2171-2179.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0839
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
X1 SPC投加量/% | 1 | 3 | 5 |
X2 CA投加量/% | 0.5 | 1.5 | 2.5 |
X3 FeSO4投加量/% | 0.5 | 1.5 | 2.5 |
因素 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
X1 SPC投加量/% | 1 | 3 | 5 |
X2 CA投加量/% | 0.5 | 1.5 | 2.5 |
X3 FeSO4投加量/% | 0.5 | 1.5 | 2.5 |
控制因素 | 实验结果 | ||||||
---|---|---|---|---|---|---|---|
SPC投加量/% | CA投加量/% | FeSO4投加量/% | TPH去除率/% | 有效态TPH/mg·kg-1 | 浸提液发光菌抑制率/% | 浸提液pH | TOC/% |
3.00 | 2.50 | 0.50 | 68.88 | 1028.04 | 37 | 7.95 | 3.08 |
3.00 | 2.50 | 2.50 | 76.37 | 765.2 | 35 | 7.59 | 3.05 |
5.00 | 0.50 | 1.50 | 49.35 | 1379.6 | 99 | 9.45 | 1.86 |
1.00 | 1.50 | 2.50 | 62.86 | 1073.4 | 20 | 6.76 | 2.86 |
1.00 | 2.50 | 1.50 | 65.29 | 1017.26 | 0 | 6.45 | 2.98 |
5.00 | 1.50 | 0.50 | 64.62 | 1173.475 | 99 | 10.11 | 2.29 |
5.00 | 2.50 | 1.50 | 72.70 | 991.74 | 90 | 9.35 | 3.11 |
3.00 | 1.50 | 1.50 | 66.86 | 1151.95 | 51 | 8.71 | 2.67 |
1.00 | 0.50 | 1.50 | 29.99 | 3317.86 | 31 | 7.71 | 1.95 |
3.00 | 1.50 | 1.50 | 66.86 | 1059.452 | 52 | 8.61 | 2.58 |
3.00 | 1.50 | 1.50 | 66.16 | 1073.82 | 57 | 8.64 | 2.55 |
3.00 | 0.50 | 0.50 | 38.98 | 2011.03 | 90 | 10.01 | 2.25 |
5.00 | 1.50 | 2.50 | 70.75 | 853.433 | 95 | 9.55 | 2.60 |
3.00 | 1.50 | 1.50 | 65.96 | 1138.44 | 51 | 8.75 | 2.32 |
3.00 | 0.50 | 2.50 | 56.56 | 1355.67 | 60 | 8.83 | 2.56 |
3.00 | 1.50 | 1.50 | 67.26 | 1406.75 | 53 | 8.55 | 2.74 |
1.00 | 1.50 | 0.50 | 45.73 | 1608.605 | 28 | 7.54 | 2.87 |
控制因素 | 实验结果 | ||||||
---|---|---|---|---|---|---|---|
SPC投加量/% | CA投加量/% | FeSO4投加量/% | TPH去除率/% | 有效态TPH/mg·kg-1 | 浸提液发光菌抑制率/% | 浸提液pH | TOC/% |
3.00 | 2.50 | 0.50 | 68.88 | 1028.04 | 37 | 7.95 | 3.08 |
3.00 | 2.50 | 2.50 | 76.37 | 765.2 | 35 | 7.59 | 3.05 |
5.00 | 0.50 | 1.50 | 49.35 | 1379.6 | 99 | 9.45 | 1.86 |
1.00 | 1.50 | 2.50 | 62.86 | 1073.4 | 20 | 6.76 | 2.86 |
1.00 | 2.50 | 1.50 | 65.29 | 1017.26 | 0 | 6.45 | 2.98 |
5.00 | 1.50 | 0.50 | 64.62 | 1173.475 | 99 | 10.11 | 2.29 |
5.00 | 2.50 | 1.50 | 72.70 | 991.74 | 90 | 9.35 | 3.11 |
3.00 | 1.50 | 1.50 | 66.86 | 1151.95 | 51 | 8.71 | 2.67 |
1.00 | 0.50 | 1.50 | 29.99 | 3317.86 | 31 | 7.71 | 1.95 |
3.00 | 1.50 | 1.50 | 66.86 | 1059.452 | 52 | 8.61 | 2.58 |
3.00 | 1.50 | 1.50 | 66.16 | 1073.82 | 57 | 8.64 | 2.55 |
3.00 | 0.50 | 0.50 | 38.98 | 2011.03 | 90 | 10.01 | 2.25 |
5.00 | 1.50 | 2.50 | 70.75 | 853.433 | 95 | 9.55 | 2.60 |
3.00 | 1.50 | 1.50 | 65.96 | 1138.44 | 51 | 8.75 | 2.32 |
3.00 | 0.50 | 2.50 | 56.56 | 1355.67 | 60 | 8.83 | 2.56 |
3.00 | 1.50 | 1.50 | 67.26 | 1406.75 | 53 | 8.55 | 2.74 |
1.00 | 1.50 | 0.50 | 45.73 | 1608.605 | 28 | 7.54 | 2.87 |
物质类型 | 编号 | 保留时间 /min | 物质名称 |
---|---|---|---|
正构烷烃 | 1 | 4.83 | 十一烷 |
3 | 6.49 | 十二烷 | |
4 | 8.16 | 十三烷 | |
5 | 8.45 | 十四烷 | |
6 | 9.41 | 十五烷 | |
8 | 10.35 | 十六烷 | |
11 | 11.78 | 十七烷 | |
14 | 13.26 | 十八烷 | |
15 | 13.36 | 十九烷 | |
17 | 15.17 | 二十烷 | |
18 | 16.11 | 二十一烷 | |
20 | 18.85 | 二十二烷 | |
21 | 17.03 | 二十三烷 | |
22 | 18.79 | 二十四烷 | |
23 | 18..93 | 二十五烷 | |
异构烷烃 | 9 | 10.35 | 2-甲基十七烷 |
12 | 12.27 | 2,6,10,14-四甲基十五烷 | |
环烷烃 | 10 | 11.32 | 环十四烷 |
13 | 12.33 | 1-辛基-1-壬基苯环己烷 | |
烯烃 | 19 | 16.39 | 1-二十烯 |
芳香烃 | 2 | 5.30 | 1-甲基-2-丙基苯 |
7 | 9.41 | 1,6,7-三甲基萘 | |
16 | 14.21 | 1-甲基蒽 |
物质类型 | 编号 | 保留时间 /min | 物质名称 |
---|---|---|---|
正构烷烃 | 1 | 4.83 | 十一烷 |
3 | 6.49 | 十二烷 | |
4 | 8.16 | 十三烷 | |
5 | 8.45 | 十四烷 | |
6 | 9.41 | 十五烷 | |
8 | 10.35 | 十六烷 | |
11 | 11.78 | 十七烷 | |
14 | 13.26 | 十八烷 | |
15 | 13.36 | 十九烷 | |
17 | 15.17 | 二十烷 | |
18 | 16.11 | 二十一烷 | |
20 | 18.85 | 二十二烷 | |
21 | 17.03 | 二十三烷 | |
22 | 18.79 | 二十四烷 | |
23 | 18..93 | 二十五烷 | |
异构烷烃 | 9 | 10.35 | 2-甲基十七烷 |
12 | 12.27 | 2,6,10,14-四甲基十五烷 | |
环烷烃 | 10 | 11.32 | 环十四烷 |
13 | 12.33 | 1-辛基-1-壬基苯环己烷 | |
烯烃 | 19 | 16.39 | 1-二十烯 |
芳香烃 | 2 | 5.30 | 1-甲基-2-丙基苯 |
7 | 9.41 | 1,6,7-三甲基萘 | |
16 | 14.21 | 1-甲基蒽 |
1 | PINEDO J, IBÁÑEZ R, LIJZEN J P A, et al. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances[J]. Journal of Environmental Management, 2013, 130: 72-79. |
2 | 刘五星, 骆永明, 滕应, 等. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 2007, 39(2): 247-251. |
LIU Wuxing, LUO Yongming, TENG Ying, et al. A survey of petroleum contamination in several Chinese oilfield soils[J]. Soils, 2007, 39(2):247-251. | |
3 | 潘云飞, 唐正, 彭欣怡, 等. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572. |
PAN Yunfei, TANG Zheng, PENG Xinyi, et al. Research status and progress of microbial remediation technology for petroleum hydrocarbon contaminated soil[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572. | |
4 | FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials, 2011, 185(1): 392-400. |
5 | SONG W, VIDONISH J E, KAMATH R, et al. Pilot-scale pyrolytic remediation of crude-oil-contaminated soil in a continuously-fed reactor: treatment intensity trade-offs[J]. Environmental Science & Technology, 2019, 53(4): 2045-2053. |
6 | HAN Z, JIAO W, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 124496. |
7 | ALTENBURGER A, BENDER M, EKELUND F, et al. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota[J]. Environmental Technology, 2014, 35(6): 773-780. |
8 | LOMINCHAR M A, SANTOS A, MIGUEL E D, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate [J]. Science of the Total Environment, 2018, 622/623: 41-48. |
9 | OURIACHE H, ARRAR J, NAMANE A, et al. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation[J]. Chemosphere, 2019, 232: 377-386. |
10 | LI Y T, LI D, LAI L J, et al. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe[J]. Chemosphere, 2020, 238: 124657. |
11 | MENA Esperanza, RUIZ Clara, José VILLASEÑOR, et al. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil[J]. Journal of Hazardous Materials, 2015, 283(11): 131-139. |
12 | SON Y, CHA J, LIM M, et al. Comparison of ultrasonic and conventional mechanical soil-washing processes for diesel-contaminated sand[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2400-2407. |
13 | 杨建刚, 刘翔, 余刚, 等. 非离子表面活性剂溶液中多环芳烃的溶解特性[J]. 环境科学, 2003, 24(6): 79-82. |
YANG Jiangang, LIU Xiang, YU Gang, et al. Characteristics of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants[J]. Environmental Science,2003, 24(6): 79-82. | |
14 | LU M, ZHANG Z, SUN S, et al. Enhanced degradation of bioremediation residues in petroleum-contaminated soil using a two-liquid-phase bioslurry reactor[J]. Chemosphere, 2009, 77(2): 161-168. |
15 | DIAZ-MARTINEZ M E, ALARCON A, FERRERA-CERRATO R. Casuarina Equisetifolia (Casuarinaceae) growth in soil with diesel and application of biostimulation and bioaugmentation[J]. Revista De Biologia Tropical, 2013, 61(3): 1039-1052. |
16 | 刘少卿, 姜林, 黄喆, 等. 挥发及半挥发有机物污染场地蒸汽抽提修复技术原理与影响因素[J]. 环境科学, 2011, 32(3): 825-833. |
LIU Shaoqing, JIANG Lin, HUANG Zhe, et al. Principles and influencing factors of steam extraction and remediation technology for volatile and semi-volatile organics contaminated sites[J]. Environmental Science, 2011, 32(3): 825-833. | |
17 | HALMEMIES S, GROENDAHL S, ARFFMAN M, et al. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil[J]. Journal of Hazardous Materials, 2003, 97(1/2/3): 127-143. |
18 | BACIOCCHI R, BONI M R, D'APRILE L. Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils[J]. Journal of Hazardous Materials, 2003, 96(2/3): 305-329. |
19 | MA J, XIA X, MA Y, et al. Stability of dissolved percarbonate and its implications for groundwater remediation[J]. Chemosphere, 2018, 205: 41-44. |
20 | MIAO Z W, GU X G, LU S G, et al. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism[J]. Chemosphere, 2015, 119: 1120-1125. |
21 | BUNDY J G, PATON G I, CAMPBELL C D. Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil[J]. Soil Biology and Biochemistry, 2004, 36(7): 1149-1159. |
22 | 张亚楠, 杨兴伦, 卞永荣, 等. 化学提取法表征污染土壤中PAHs老化规律和蚯蚓富集特征[J]. 环境科学, 2015, 36(12): 4582-4590. |
ZHANG Yanan, YANG Xinglun, BIAN Yongrong, et al. Characterization of PAHs aging and earthworm enrichment characteristics in contaminated soil by chemical extraction method[J]. Environmental Science, 2015, 36(12): 4582-4590. | |
23 | STOKES J D, WILKINSON A, REID B J, et al. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique[J]. Environmental Toxicology and Chemistry, 2005, 24(6): 1325-1330. |
24 | 张金永, 叶倩, 王明新, 等. 机械化学法修复柴油污染土壤的效率、产物及影响[J]. 环境科学学报, 2021, 41(3): 1058-1065. |
ZHANG Jinyong, YE Qian, WANG Mingxin, et al. Remediation of diesel-contaminated soil by mechanochemical treatment: efficiency, products and impacts[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1058-1065. | |
25 | JIANG W, JOENS J A, DIONYSIOU D D, et al. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2013, 262: 7-13. |
26 | SUN B, GUAN X, FANG J, et al. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(Ⅲ)[J]. Environmental Science & Technology, 2015, 49(20): 12414-12421. |
27 | CHOW C H, SZE-YIN LEUNG Y. Transformations of organic micropollutants undergoing permanganate/bisulfite treatment: kinetics, pathways and toxicity[J]. Chemosphere, 2019, 237: 124524. |
28 | YUAN D L, ZHANG C, TANG S F, et al. Fe3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization[J]. Science of the Total Environment, 2020, 727: 138773. |
29 | 殷雪妍, 张艾, 刘亚男. 过氧化钙去除水中糖皮质激素的响应面分析[J]. 中国环境科学, 2018, 38(2): 608-615. |
YIN Xueyan, ZHANG Ai, LIU Yanan. Response surface analysis of calcium peroxide to remove glucocorticoids in water [J]. China Environmental Science, 2018, 38(2): 608-615. | |
30 | BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275: 121-135. |
31 | SHEN Y F, ZHANG N Y. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption [J]. Bioresource Technology, 2019, 282: 294-300. |
32 | ADAMO I, GHISOLI C, CAUCIA F. A contribution to the study of FTIR spectra of opals[J]. Neues Jahrbuch für Mineralogie-Abhandlungen, 2010, 187(1): 63-68. |
33 | KRAMER M G, SANDERMAN J, CHADWICK O A, et al. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil[J]. Global Change Biology, 2012, 18(8): 2594-2605. |
34 | SALVADÓ J, TESI T, ANDERSSON A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf[J]. Geophysical Research Letters, 2015, 42(19): 8122-8130. |
35 | ZHAO Q, POULSON S R, OBRIST D, et al. Iron-bound organic carbon in forest soils: quantification and characterization[J]. Biogeosciences, 2016, 13(16): 1104-1108. |
36 | HUANG X, FENG C, ZHAO G, et al. Carbon sequestration potential promoted by oxalate extractable iron oxides through organic fertilization[J]. Soil Science Society of America Journal, 2017, 81(6): 1359-1370. |
37 | DROSOS Marios, PICCOLO Alessandro. The molecular dynamics of soil humus as a function of tillage[J]. Land Degradation & Development, 2018, 29(6): 1792-1805. |
38 | KRAMER M G, CHADWICK O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104-1108. |
39 | BARRAL M T, ARIAS M, GUERIF J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 1998, 46(3/4): 261-272. |
40 | CHEN C, DYNES J J, WANG J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 2014, 48(23): 13751-13759. |
41 | KLAUS Kaiser, GEORG Guggenberger. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils[J]. Organic Geochemistry, 2000, 31(7/8): 711-725. |
[1] | WANG Min, MAO Yuhong, CHEN Chao, BAI Dan. Progress on the toxicity, morphology and control of aluminum salt hydrolysates in water treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 479-488. |
[2] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[3] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[4] | LU Shijian, LIU Ling, LIU Ziwu, GUO Bowen, YU Xulin, LIANG Yan, ZHAO Dongya, ZHU Quanmin. Study of CO2 absorption stability of AEP-DPA-CuO phase change nanofluids [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4555-4561. |
[5] | LI Po, ZHANG Shanshan, SHI Jinqiu, GAO Hang, WANG Mingxin. Remediation of aniline-contaminated groundwater by activated persulfate and its environmental risks [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2753-2760. |
[6] | XU Mingjun, GUO Zhaochun, LI Li, ZHU Ziqi, ZHANG Qian, HONG Junming. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053. |
[7] | DING Xin, ZHANG Dongming, JIAO Weizhou, LIU Youzhi. Research progress of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4918-4930. |
[8] | FANG Zhihuang, LIU Xiang, YU Yang, QIAN Yajie, XUE Gang. Performance and properties of H2-receptor antagonist degradation by ferrate [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4647-4655. |
[9] | PAN Yunfei, TANG Zheng, PENG Xinyi, GAO Pin. Microbial remediation techniques for petroleum hydrocarbons contaminated soil: a review [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572. |
[10] | Xingxing CHEN, Min LIU, Ying CHEN. Microplastics pollution in freshwater environment [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. |
[11] | Li JIAO, Jinmei XU, Qiuya ZHANG, Hui PENG, Xia XU, Liping WANG. Preparation and photocatalytic activity of amino-modified sheet-like carbon nitride [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1866-1874. |
[12] | Yan JIANG,Heping ZHOU,Zhe ZHANG,Hongbing LIU,Shunxiang SHEN. Bioremediation of contaminated sites by petroleum hydrocarbon under low temperature environment [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 419-428. |
[13] | Yanping JIA,Zhen ZHANG,Zhenhao BI,Jian ZHANG,Lanhe ZHANG. Efficiency and biological toxicity of iron-carbon microelectrolysis in treatment of the dye wastewater [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797. |
[14] | Shuang WANG,Youhao WANG,Fashe LI,Wenchao WANG,Meng SUI. Analysis of oxidative degradation degree of biodiesel based on UV absorbance [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 506-512. |
[15] | Jinyong ZHANG, Lin WANG, Mingxin WANG, Yang XIAO, Ying HAN. Mechanochemical remediation of petroleum hydrocarbons contaminated soil and its effects on soil properties [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4726-4733. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |