1 |
WU X, CHENG Y, VEDER J P, et al. An efficient bio-inspired oxygen reduction reaction catalyst: MnO x nanosheets incorporated iron phthalocyanine functionalized graphene[J]. Energy & Environmental Materials, 2021, 4(3): 474-480.
|
2 |
CHENG Y, WU X, VEDER J P, et al. Tuning the electrochemical property of the ultrafine metal-oxide nanoclusters by iron phthalocyanine as efficient catalysts for energy storage and conversion[J]. Energy & Environmental Materials, 2019, 2(1): 5-17.
|
3 |
费慧龙, 段镶锋. 氮掺杂石墨炔用于氧还原反应[J]. 物理化学学报, 2019, 35(6): 559-560.
|
|
FEI Huilong, DUAN Xiangfeng. Nitrogen doped graphdiyne enhances oxygen reduction reactions[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 559-560.
|
4 |
CHOI E Y, KIM D E, LEE S Y, et al. Electrocatalytic activity of nitrogen-doped holey carbon nanotubes in oxygen reduction and evolution reactions and their application in rechargeable zinc-air batteries[J]. Carbon, 2020, 166: 245-255.
|
5 |
RAO C V, CABRERA C R, ISHIKAWA Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627.
|
6 |
SHARIFI T, HU G, JIA X, et al. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes[J]. ACS Nano, 2012, 6(10): 8904-8912.
|
7 |
XU Z Y, ZHOU Z Y, LI B Y, et al. Identification of efficient active sites in nitrogen-doped carbon nanotubes for oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8689-8696.
|
8 |
ZHANG J, LU S F, XIANG Y, et al. Intrinsic effect of carbon supports on the activity and stability of precious metal based catalysts for electrocatalytic alcohol oxidation in fuel cells: a review[J]. ChemSusChem, 2020, 13(10): 2484-2502.
|
9 |
CHENG Y, ZHANG J, JIANG S P. Are metal-free pristine carbon nanotubes electrocatalytically active?[J]. Chemical Communications, 2015, 51(72): 13764-13767.
|
10 |
CHENG Y, MEMAR A, SAUNDERS M, et al. Dye functionalized carbon nanotubes for photoelectrochemical water splitting-role of inner tubes[J]. Journal of Materials Chemistry A, 2016, 4(7): 2473-2483.
|
11 |
KALBAC M, GREEN A A, HERSAM M C, et al. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type[J]. Chemistry: a European Journal, 2011, 17(35): 9806-9815.
|
12 |
CHENG Y, XU C W, JIA L C, et al. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting[J]. Applied Catalysis B: Environmental, 2015, 163: 96-104.
|
13 |
YUAN W Y, CHENG Y, SHEN P K, et al. Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(5): 1961-1971.
|
14 |
ZHANG J, CHENG Y, LU S F, et al. Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes[J]. Chemical Communications, 2014, 50(89): 13732-13734.
|
15 |
LOPEZ-BEZANILLA A. Electronic and quantum transport properties of substitutionally doped double-walled carbon nanotubes[J]. The Journal of Physical Chemistry C, 2014, 118(3): 1472-1477.
|
16 |
CHEN P, XIAO T Y, QIAN Y H, et al. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity[J]. Advanced Materials, 2013, 25(23): 3192-3196.
|
17 |
ZHANG J, LU S F, XIANG Y, et al. Carbon-nanotubes-supported Pd nanoparticles for alcohol oxidations in fuel cells: effect of number of nanotube walls on activity[J]. ChemSusChem, 2015, 8(17): 2956-2966.
|
18 |
YOKOYAMA K, YOKOYAMA S, SATO Y, et al. Efficiency and long-term durability of a nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluorination-assisted nanotube-substitution for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2016, 4(23): 9184-9195.
|
19 |
GANGULY D, SUNDARA R, RAMANUJAM K. Chemical vapor deposition-grown nickel-encapsulated N-doped carbon nanotubes as a highly active oxygen reduction reaction catalyst without direct metal-nitrogen coordination[J]. ACS Omega, 2018, 3(10): 13609-13620.
|
20 |
许智慧, 沈丽明, 吴强, 等. 热解聚苯胺/碳纳米笼复合物制备氮掺杂碳材料及其氧还原性能研究[J]. 化学学报, 2015, 73(8): 793-798.
|
|
XU Zhihui, SHEN Liming, WU Qiang, et al. Oxygen reduction performance of the nitrogen-doped carbon materials pyrolyzed from polyaniline/carbon nanocage composites[J]. Acta Chimica Sinica, 2015, 73(8): 793-798.
|
21 |
彭三, 郭慧林, 亢晓峰. 氮掺杂石墨烯的制备及其对氧还原反应的电催化性能[J]. 物理化学学报, 2014, 30(9): 1778-1786.
|
|
PENG San, GUO Huilin, KANG Xiaofeng. Preparation of nitrogen-doped graphene and its electrocatalytic activity for oxygen reduction reaction[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1778-1786.
|