Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 279-289.DOI: 10.16085/j.issn.1000-6613.2021-0586
• Materials science and technology • Previous Articles Next Articles
SHEN Muyuan(), SHAO Yijia, HUANG Bin, LIU Yanchen, LIAO Shijun()
Received:
2021-03-23
Revised:
2021-05-19
Online:
2021-11-12
Published:
2021-11-12
Contact:
LIAO Shijun
通讯作者:
廖世军
作者简介:
沈牧原(1996—),男,硕士研究生,研究方向为钾离子电池正极材料。E-mail:基金资助:
CLC Number:
SHEN Muyuan, SHAO Yijia, HUANG Bin, LIU Yanchen, LIAO Shijun. Progress on the prussian blue analogues as cathode electrode in potassium-ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 279-289.
沈牧原, 邵奕嘉, 黄斌, 刘燕晨, 廖世军. 普鲁士蓝类正极材料在钾离子电池中的应用研究进展[J]. 化工进展, 2021, 40(S2): 279-289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0586
1 | RAJAGOPALAN Ranjusha, TANG Yougen, JI Xiaobo, et al. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. |
2 | DELMAS C, FOUASSIER C, HAGENMULLER P. Les bronzes de cobalt KxCoO2 (x<1). L’oxyde KCoO2[J]. Journal of Solid State Chemistry, 1975, 13(3): 165-171. |
3 | LIU C L, LUO S H, HUANG H B, et al. Layered potassium-deficient P2-and P3-type cathode materials KxMnO2 for K-ion batteries[J]. Chemical Engineering Journal, 2019, 356: 53-59. |
4 | HAN J, LI G N, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassiumion batteries[J]. Chemical Communications, 2017, 53(11): 1805-1808. |
5 | YAKUBOVICH O V, MASSA W, DIMITROVA O V. A new type of anionic framework in microporous potassium iron(Ⅱ) phosphate KFe(PO4)[J]. Zeitschrift Fur Anorganische und Allgemeine Chemie, 2005, 631(12): 2445-2449. |
6 | ZHENYU Xing, ZELANG Jian, WEI Luo, et al. A perylene anhydride crystal as a reversible electrode for K-ion batteries[J]. Energy Storage Materials, 2016, 2: 63-68. |
7 | ZHAO Qing, WANG Jian Bin, LU Yong, et al. Oxocarbon salts for fast rechargeable batteries[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12528-12532. |
8 | TARGHOLI Ehsan, Morteza MOUSAVI-KHOSHDEL, RAHMANIFARA Mohmmadsafi, et al. Cu- and Fe-hexacyanoferrate as cathode materials for Potassium ion battery: a First-principles study[J]. Chemical Physics Letters, 2017, 687: 244-249. |
9 | WANG B, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. |
10 | VAALMA Christoph, GIFFIN Guinevere A, BUCHHOLZ Daniel, et al. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black[J]. Journal of the Electrochemical Society, 2016, 163(7): A1295-A1299. |
11 | KIM Haegyeom, KIM Jae Chul, BO Shou-Hang, et al. K-ion batteries based on a P2-type K0.6CoO2 cathode[J]. Advanced Energy Materials, 2017, 7(17): 1700098. |
12 | SHADIKE Zulipiya, SHI Dingren, WANG Tian, et al. Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery[J]. Journal of Materials Chemistry A, 2017, 5(14): 6393-6398. |
13 | ZHANG Wenchao, LIU Yajie, GUO Zaiping. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science Advances, 2019, 5(5): eaav7412. |
14 | EFTEKHARI Ali. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228. |
15 | JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K‑ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36):11566-11569. |
16 | ZHANG Cheng Lin, XU Yang, ZHOU Min, et al. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604307. |
17 | CHONG Shaokun, CHEN Yuanzhen, ZHENG Yang, et al. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22465-22471. |
18 | DONG J H, LEI Y, HAN D, et al. Utilizing an autogenously protective atmosphere to synthesize a prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries[J]. Chemical Communications, 2019, 55(83): 12555-12558. |
19 | ZHU Y H, YIN Y B, YANG X, et al. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(27): 7881-7885. |
20 | ZHU Yunhai, YANG Xu, BAO Di, et al. High-energy-density flexible potassium-ion battery based on patterned electrodes[J]. Joule, 2018, 2(4): 736-746. |
21 | GE P, LI S, SHUAI H, et al. Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) Prussian blue analogs[J]. Advanced Materials, 2019, 31(3): e1806092. |
22 | BIE Xiaofei, KUBOTA Kei, HOSAKA Tomooki, et al. A novel K-ion battery: hexacyanoferrate(Ⅱ)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9): 4325-4330. |
23 | JIANG Xi, ZHANG Tianran, YANG Liuqing, et al. A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries[J]. ChemElectroChem, 2017, 4(9): 2237-2242. |
24 | XUE L G, LI Y T, GAO H C, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6): 2164-2167. |
25 | SUN Yunpo, LIU Chunli, XIE Jian, et al. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries[J]. New Journal of Chemistry, 2019, 43(29): 11618-11625. |
26 | WU Xianyong, JIAN Zelang, LI Zhifei, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77: 54-57. |
27 | HUANG Bin, SHAO Yijia, LIU Yanchen, et al. Improving potassium-ion batteries by optimizing the composition of prussian blue cathode[J]. ACS Applied Energy Materials, 2019, 2(9): 6528-6535. |
28 | CHONG Shaokun, WU Yifang, GUO Shengwu, et al. Potassium nickel hexacyanoferrate as cathode for high voltage and ultralong life potassium-ion batteries[J]. Energy Storage Materials, 2019, 22: 120-127. |
29 | HUANG Bin, LIU Yanchen, LU Zhiyuan, et al. Prussian blue [K2FeFe(CN)6] doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16659-16667. |
30 | CHONG S K, YANG J, SUN L, et al. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density[J]. ACS Nano, 2020, 14(8): 9807-9818. |
31 | HEO J W, CHAE M S, HYOUNG J, et al. Rhombohedral potassium-zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries[J]. Inorganic Chemistry, 2019, 58(5): 3065-3072. |
32 | LUO Yushan, SHEN Bolei, GUO Bingshu, et al. Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2018, 122: 31-35. |
33 | HE Guang, NAZAR Linda F. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127. |
34 | HOSAKA T, FUKABORI T, KOJIMA H, et al. Effect of particle size and anion vacancy on electrochemical potassium ion insertion into potassium manganese hexacyanoferrates[J]. ChemSusChem, 2021, 14(4): 1166-1175. |
35 | QIN Mingsheng, REN Wenhao, MENG Jiashen, et al. Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11564-11570. |
36 | XUE Q, LI L, HUANG Y X, et al. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22339-22345. |
37 | ZHOU M, BAI P, JI X, et al. Electrolytes and interphases in potassium ion batteries[J]. Advanced Materials, 2021, 33(7): e2003741. |
38 | PADIGI Prasanna, THIEBES Joseph, SWAN Mitchell, et al. Prussian green: a high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166: 32-39. |
39 | XIA Maoying, ZHANG Xikun, LIU Tingting, et al. Commercially available Prussian blue get energetic in aqueous K-ion batteries[J]. Chemical Engineering Journal, 2020, 394: 124923. |
40 | JIANG Liwei, LU Yaxiang, ZHAO Chenglong, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
41 | ZHU Kunjie, LI Zhaopeng, JIN Ting, et al. Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(40): 21103-21109. |
42 | HUANG Meng, WANG Xuanpeng, MENG Jiashen, et al. Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassium-ion storage[J]. Nano Energy, 2020, 77: 105069. |
43 | REN Wenhao, CHEN Xianjue, ZHAO Chuan. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage[J]. Advanced Energy Materials, 2018, 8(24): 1801413. |
44 | WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5425. |
45 | WESSELLS C D, HUGGINS R A, CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications, 2011, 2: 550. |
46 | SU D, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1): 1604007. |
47 | LI Chang, WANG Xusheng, DENG Wenjun, et al. Size engineering and crystallinity control enable high‐capacity aqueous potassium‐ion storage of prussian white analogues[J]. ChemElectroChem, 2018, 5(24): 3887-3892. |
48 | NOSSOL E, SOUZA V H, ZARBIN A J. Carbon nanotube/prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery[J]. Journal of Colloid and Interface Science, 2016, 478: 107-116. |
49 | Marc MORANT-GINER, Roger SANCHIS-GUAL, ROMERO Jorge, et al. Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(27): 1706125. |
50 | LOPES Laís C, HUSMANN Samantha, ZARBIN Aldo J G. Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: a multifunctional material for transparent aqueous K-ion battery or electrochromic device[J]. Electrochimica Acta, 2020, 345: 136199. |
51 | BAIOUN Abeer, KELLAWI Hassan, FALAH Ahamed. Nano Prussian yellow film modified electrode: a cathode material for aqueous potassium ion secondary battery with zinc anode[J]. Current Nanoscience, 2018, 14(3): 227-233. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[11] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[12] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[13] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[14] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[15] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |