Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1578-1593.DOI: 10.16085/j.issn.1000-6613.2021-2221
• Chemical energy storage • Previous Articles Next Articles
HU Tingyuan1(), LI Pingfan1, WANG Wei1,2(), LIU Zhuang1,2, JU Xiaojie1,2, XIE Rui1,2, CHU Liangyin1,2
Received:
2021-11-01
Revised:
2022-01-04
Online:
2022-03-28
Published:
2022-03-23
Contact:
WANG Wei
胡庭瑗1(), 李平凡1, 汪伟1,2(), 刘壮1,2, 巨晓洁1,2, 谢锐1,2, 褚良银1,2
通讯作者:
汪伟
作者简介:
胡庭瑗(1998—),女,博士研究生,研究方向为新型功能材料。E-mail:基金资助:
CLC Number:
HU Tingyuan, LI Pingfan, WANG Wei, LIU Zhuang, JU Xiaojie, XIE Rui, CHU Liangyin. Research pogress of functional hydrogel materials for soft supercapacitors[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1578-1593.
胡庭瑗, 李平凡, 汪伟, 刘壮, 巨晓洁, 谢锐, 褚良银. 面向柔性超级电容器的功能水凝胶材料的研究进展[J]. 化工进展, 2022, 41(3): 1578-1593.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2221
1 | ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541. |
2 | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652. |
3 | LIBICH J, MÁCA J, VONDRÁK J, et al. Supercapacitors: properties and applications[J]. Journal of Energy Storage, 2018, 17: 224-227. |
4 | WU Y X, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84. |
5 | QIU B, LIN B C, YAN F. Ionic liquid/poly(ionic liquid)-based electrolytes for energy devices[J]. Polymer International, 2013, 62(3): 335-337. |
6 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
7 | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
8 | ZHANG W, FENG P, CHEN J, et al. Electrically conductive hydrogels for flexible energy storage systems[J]. Progress in Polymer Science, 2019, 88: 220-240. |
9 | SHANG J, SHAO Z, CHEN X. Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel[J]. Biomacromolecules, 2008, 9(4): 1208-1213. |
10 | KIM S J, YOON S G, LEE Y M, et al. Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution[J]. Biosensors and Bioelectronics, 2004, 19(6): 531-536. |
11 | KIM S J, SHIN S R, LEE J H, et al. Electrical response characterization of chitosan/polyacrylonitrile hydrogel in NaCl solutions[J]. Journal of Applied Polymer Science, 2003, 90(1): 91-96. |
12 | QIU F, HUANG Y, HE G G, et al. A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability[J]. Electrochimica Acta, 2020, 363: 137241. |
13 | ZHANG Y S, KHADEMHOSSEINI A. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): 500. |
14 | GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
15 | SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414): 133-136. |
16 | AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
17 | XU Y, LIN Z, HUANG X, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano, 2013, 7(5): 4042-4049. |
18 | CHAN C Y, WANG Z Q, JIA H, et al. Recent advances of hydrogel electrolytes in flexible energy storage devices[J]. Journal of Materials Chemistry A, 2021, 9(4): 2043-2069. |
19 | DONG L B, YANG W, YANG W, et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2019, 7(23): 13810-13832. |
20 | KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483-2498. |
21 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
22 | WU D D, JI C C, MI H Y, et al. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors[J]. Nanoscale, 2021, 13(37): 15869-15881. |
23 | NA R Q, LIU Y D, LU N, et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors[J]. Chemical Engineering Journal, 2019, 374: 738-747. |
24 | YANG C, LIU Z, CHEN C, et al. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15758-15767. |
25 | WEI J J, WEI G M, SHANG Y H, et al. Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte[J]. Advanced Materials, 2019, 31(30): 1900248. |
26 | FANG L, CAI Z, DING Z, et al. Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21895-21903. |
27 | DING Q Q, XU X W, YUE Y Y, et al. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27987-28002. |
28 | QIN G, WANG M X, FAN L D, et al. Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor[J]. Journal of Power Sources, 2020, 474: 228602. |
29 | HUANG Y, LIU J, WANG J Q, et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte[J]. Angewandte Chemie International Edition, 2018, 57(31): 9810-9813. |
30 | HINA M, BASHIR S, KAMRAN K, et al. Fabrication of aqueous solid-state symmetric supercapacitors based on self-healable poly (acrylamide)/PEDOT: PSS composite hydrogel electrolytes[J]. Materials Chemistry and Physics, 2021, 273: 125125. |
31 | DENG Z X, GUO Y, ZHAO X, et al. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions[J]. Chemistry of Materials, 2018, 30(5): 1729-1742. |
32 | LIU J, TAN C S Y, YU Z Y, et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing[J]. Advanced Materials, 2017, 29(22): 1605325. |
33 | GEISLER I M, SCHNEIDER J P. Evolution-based design of an injectable hydrogel[J]. Advanced Functional Materials, 2012, 22(3): 529-537. |
34 | APPEL E A, TIBBITT M W, WEBBER M J, et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions[J]. Nature Communications, 2015, 6: 6295. |
35 | TAO F, QIN L M, WANG Z K, et al. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15541-15548. |
36 | TSAREVSKY N V, MATYJASZEWSKI K. Reversible redox cleavage/coupling of polystyrene with disulfide or thiol groups prepared by atom transfer radical polymerization[J]. Macromolecules, 2002, 35(24): 9009-9014. |
37 | WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9): 1352-1359. |
38 | DAI L X, ZHANG W, SUN L, et al. Highly stretchable and compressible self-healing P(AA-co-AAm)/CoCl2 hydrogel electrolyte for flexible supercapacitors[J]. ChemElectroChem, 2019, 6(2): 467-472. |
39 | HOLTEN-ANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2651-2655. |
40 | WEI Z, YANG J H, DU X J, et al. Dextran-based self-healing hydrogels formed by reversible Diels-alder reaction under physiological conditions[J]. Macromolecular Rapid Communications, 2013, 34(18): 1464-1470. |
41 | LIU S L, KANG M M, LI K W, et al. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels[J]. Chemical Engineering Journal, 2018, 334: 2222-2230. |
42 | EHSANI A, HEIDARI A A, SHIRI H M. Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies[J]. The Chemical Record, 2019, 19(5): 908-926. |
43 | KUMAR S, SAEED G, ZHU L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352. |
44 | ZHANG Y, SHI Z J, LIU L, et al. High conductive architecture: bimetal oxide with metallic properties @ bimetal hydroxide for high-performance pseudocapacitor[J]. Electrochimica Acta, 2017, 231: 487-494. |
45 | PATIL D S, PAWAR S A, SHIN J C, et al. Layered double hydroxide based on ZnCo@NiCo- nano-architecture on 3D graphene scaffold as an efficient pseudocapacitor[J]. Journal of Power Sources, 2019, 435: 226812. |
46 | CHEN R, YU M, SAHU R P, et al. The development of pseudocapacitor electrodes and devices with high active mass loading[J]. Advanced Energy Materials, 2020, 10(20): 1903848. |
47 | ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach[J]. Advanced Functional Materials, 2015, 25(48): 7530-7538. |
48 | XI Y N, DONG B H, DONG Y N, et al. Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance[J]. Chemistry of Materials, 2016, 28(5): 1355-1362. |
49 | GONZÁLEZ F J, MONTESINOS A, ARAUJO-MORERA J, et al. ‘In-situ’ preparation of carbonaceous conductive composite materials based on PEDOT and biowaste for flexible pseudocapacitor application[J]. Journal of Composites Science, 2020, 4(3): 87. |
50 | LIU T, FINN L, YU M H, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters, 2014, 14(5): 2522-2527. |
51 | WANG H L, CASALONGUE H S, LIANG Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477. |
52 | ZHAO X, WANG S J, WU Q. Nitrogen and phosphorus dual-doped hierarchical porous carbon with excellent supercapacitance performance[J]. Electrochimica Acta, 2017, 247: 1140-1146. |
53 | JIN Q Z, LI W, WANG K L, et al. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and high-performance sodium storage[J]. Advanced Functional Materials, 2020, 30(14): 1909907. |
54 | YI C Q, ZOU J P, YANG H Z, et al. Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1980-2001. |
55 | TOUPIN M, BROUSSE T, BÉLANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004, 16(16): 3184-3190. |
56 | WANG Y Q, DING Y, GUO X L, et al. Conductive polymers for stretchable supercapacitors[J]. Nano Research, 2019, 12(9): 1978-1987. |
57 | LI H L, WANG J X, CHU Q X, et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. Journal of Power Sources, 2009, 190(2): 578-586. |
58 | MUZAFFAR A, AHAMED M B, DESHMUKH K, et al. A review on recent advances in hybrid supercapacitors: design, fabrication and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 123-145. |
59 | LU Q, CHEN J G, XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edition, 2013, 52(7): 1882-1889. |
60 | WANG C, ZHU J W, LIANG S M, et al. Reduced graphene oxide decorated with CuO-ZnO hetero-junctions: towards high selective gas-sensing property to acetone[J]. Journal of Materials Chemistry A, 2014, 2(43): 18635-18643. |
61 | MENG X Q, DENG J, ZHU J W, et al. Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors[J]. Scientific Reports, 2016, 6: 21717. |
62 | DU X X, LUO F B, GUO Y Y, et al. Fabrication of graphene/single wall carbon nanotubes/polyaniline composite gels as binder-free electrode materials[J]. Journal of Applied Polymer Science, 2019, 136(3): 46948. |
63 | YANG J Q, ZHOU X L, WU D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108. |
64 | JIA Q, YANG C, PAN Q Q, et al. High-voltage aqueous asymmetric pseudocapacitors based on methyl blue-doped polyaniline hydrogels and the derived N/S-codoped carbon aerogels[J]. Chemical Engineering Journal, 2020, 383: 123153. |
65 | KANG Y B, WANG B, YAN Y P, et al. Three-dimensionally macroporous nitrogen and boron co-doped graphene aerogels derived from polyaspartamide for supercapacitor electrodes[J]. Materials Today Communications, 2020, 25: 101495. |
66 | ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019, 15(47): 1903817. |
67 | SHANG Y H, WEI J J, WU C, et al. Extreme temperature-tolerant organohydrogel electrolytes for laminated assembly of biaxially stretchable pseudocapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42959-42966. |
68 | YUN T G, PARK M, KIM D H, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device[J]. ACS Nano, 2019, 13(3): 3141-3150. |
69 | ZOU Y L, CHEN C, SUN Y J, et al. Flexible, all-hydrogel supercapacitor with self-healing ability[J]. Chemical Engineering Journal, 2021, 418: 128616. |
70 | MO F N, LI Q, LIANG G J, et al. A self-healing crease-free supramolecular all-polymer supercapacitor[J]. Advanced Science, 2021, 8(12): 2100072. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[11] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[12] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[13] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[14] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[15] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |