Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1479-1486.DOI: 10.16085/j.issn.1000-6613.2021-2240
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
CHEN Jian(), JI Cunmin, BU Lingbing
Received:
2021-11-02
Revised:
2021-12-28
Online:
2022-03-28
Published:
2022-03-23
Contact:
CHEN Jian
通讯作者:
陈健
作者简介:
陈健(1964—),男,教授级高级工程师,从事吸附分离技术、氢能、工业副产气综合利用研究开发。Email:基金资助:
CLC Number:
CHEN Jian, JI Cunmin, BU Lingbing. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1479-1486.
陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2240
序号 | 排放气类别 | 产量/×108m3?a-1 | 典型组成(体积分数)/% | 氢气量/×108m3?a-1 |
---|---|---|---|---|
1 | 焦炉煤气 | 约1114 | H2∶57,CH4∶25.5,CO∶6.5,C n H m ∶2.5,CO2∶2,N2∶4 | 约635 |
2 | 炼厂气 | 约1193 | H2∶14~90,CH4∶3~25,C2+∶15~30 | 约620 |
3 | 合成氨尾气 | 约124 | H2∶20~70,CH4∶7~18,Ar∶3~8,N2∶7~25 | 约86 |
4 | 甲醇驰放气 | 约239 | H2∶60~75,CH4∶5~11,CO∶5~7,CO2∶2~13,N2∶0.5~20 | 约161 |
5 | 兰炭尾气 | 约290 | H2∶26~30,CO∶12~16,CH4∶7~8.5,CO2∶6~9,N2∶35~39 | 约81.2 |
6 | 氯酸钠副产气 | 约5.7 | H2∶约95,O2∶2.5,其他 | 约5 |
7 | 聚氯乙烯(PVC)尾气 | 约12.86 | H2∶50~70,C2H2∶5~15,C2H3Cl∶8~25,N2∶10~15 | 约6 |
8 | 烧碱尾气 | 约99.17 | H2∶约98.5,N2约0.5,O2∶约1,其他 | 约97.7 |
9 | 丙烷脱氢(PDH)尾气 | 约3.8 | H2∶80~92,C2H6∶1~2,C3H8∶0.5~1,N2∶1~2 | 约3.1 |
序号 | 排放气类别 | 产量/×108m3?a-1 | 典型组成(体积分数)/% | 氢气量/×108m3?a-1 |
---|---|---|---|---|
1 | 焦炉煤气 | 约1114 | H2∶57,CH4∶25.5,CO∶6.5,C n H m ∶2.5,CO2∶2,N2∶4 | 约635 |
2 | 炼厂气 | 约1193 | H2∶14~90,CH4∶3~25,C2+∶15~30 | 约620 |
3 | 合成氨尾气 | 约124 | H2∶20~70,CH4∶7~18,Ar∶3~8,N2∶7~25 | 约86 |
4 | 甲醇驰放气 | 约239 | H2∶60~75,CH4∶5~11,CO∶5~7,CO2∶2~13,N2∶0.5~20 | 约161 |
5 | 兰炭尾气 | 约290 | H2∶26~30,CO∶12~16,CH4∶7~8.5,CO2∶6~9,N2∶35~39 | 约81.2 |
6 | 氯酸钠副产气 | 约5.7 | H2∶约95,O2∶2.5,其他 | 约5 |
7 | 聚氯乙烯(PVC)尾气 | 约12.86 | H2∶50~70,C2H2∶5~15,C2H3Cl∶8~25,N2∶10~15 | 约6 |
8 | 烧碱尾气 | 约99.17 | H2∶约98.5,N2约0.5,O2∶约1,其他 | 约97.7 |
9 | 丙烷脱氢(PDH)尾气 | 约3.8 | H2∶80~92,C2H6∶1~2,C3H8∶0.5~1,N2∶1~2 | 约3.1 |
尾气 | 组成/% | ||||||
---|---|---|---|---|---|---|---|
H2 | N2 | O2 | C2H3Cl | C2H2 | H2O | Cl2 | |
氯酸钠尾气 | 约92 | — | 5 | — | — | ≤1 | 10~30mg/m3 |
氯乙烯尾气 | 30~70 | 8~15 | — | 8~25 | 5~10 | 饱和 | — |
尾气 | 组成/% | ||||||
---|---|---|---|---|---|---|---|
H2 | N2 | O2 | C2H3Cl | C2H2 | H2O | Cl2 | |
氯酸钠尾气 | 约92 | — | 5 | — | — | ≤1 | 10~30mg/m3 |
氯乙烯尾气 | 30~70 | 8~15 | — | 8~25 | 5~10 | 饱和 | — |
项目 | 成本/CNY?m-3 | ||||||
---|---|---|---|---|---|---|---|
原料 | 辅助材料 | 燃料动力消耗 | 直接工资 | 制造费用 | 财务及管理费用 | 合计 | |
煤制氢 | 0.375 | 0.253 | 0.069 | 0.012 | 0.135 | 0.060 | 0.904 |
天然气制氢 | 0.990 | 0.031 | 0.232 | 0.007 | 0.138 | 0.080 | 1.478 |
甲醇制氢 | 1.300 | 0.160 | 0.395 | 0.012 | 0.055 | 0.020 | 1.942 |
电解水制氢 | 0.012 | 0.100 | 3.000 | 0.038 | 0.235 | 0.041 | 3.426 |
焦炉煤气制氢 | 0.600 | 0.006 | 0.216 | 0.007 | 0.078 | 0.028 | 0.935 |
炼厂气制氢 | 0.684 | 0.020 | 0.016 | 0.006 | 0.051 | 0.033 | 0.810 |
氯碱尾气 | 0.440 | 0.020 | 0.020 | 0.006 | 0.062 | 0.020 | 0.568 |
项目 | 成本/CNY?m-3 | ||||||
---|---|---|---|---|---|---|---|
原料 | 辅助材料 | 燃料动力消耗 | 直接工资 | 制造费用 | 财务及管理费用 | 合计 | |
煤制氢 | 0.375 | 0.253 | 0.069 | 0.012 | 0.135 | 0.060 | 0.904 |
天然气制氢 | 0.990 | 0.031 | 0.232 | 0.007 | 0.138 | 0.080 | 1.478 |
甲醇制氢 | 1.300 | 0.160 | 0.395 | 0.012 | 0.055 | 0.020 | 1.942 |
电解水制氢 | 0.012 | 0.100 | 3.000 | 0.038 | 0.235 | 0.041 | 3.426 |
焦炉煤气制氢 | 0.600 | 0.006 | 0.216 | 0.007 | 0.078 | 0.028 | 0.935 |
炼厂气制氢 | 0.684 | 0.020 | 0.016 | 0.006 | 0.051 | 0.033 | 0.810 |
氯碱尾气 | 0.440 | 0.020 | 0.020 | 0.006 | 0.062 | 0.020 | 0.568 |
制氢方式 | 原料计价基础 | 成本 /CNY | CO2排放 /kg | 碳排放费用 /CNY | 综合 价格 /CNY |
---|---|---|---|---|---|
煤制氢 | 煤约500CNY/t | 0.904 | 2.480 | 0.124 | 1.028 |
天然气制氢 | 天然气约2.5CNY/m3 | 1.478 | 0.890 | 0.045 | 1.522 |
甲醇制氢 | 甲醇约2600CNY/t | 1.942 | 1.225 | 0.061 | 2.003 |
电解水制氢 | 电约0.6CNY/kWh | 3.426 | 2.400 | 0.120 | 3.546 |
焦炉煤气制氢 | 焦炉煤气约0.6CNY/m3 | 0.935 | 0.180 | 0.009 | 0.944 |
炼厂气制氢 | 炼厂气约0.35CNY/m3 | 0.810 | 0.100 | 0.005 | 0.815 |
氯碱尾气制氢 | 氯碱尾气约0.4CNY/m3 | 0.568 | 0.100 | 0.005 | 0.573 |
制氢方式 | 原料计价基础 | 成本 /CNY | CO2排放 /kg | 碳排放费用 /CNY | 综合 价格 /CNY |
---|---|---|---|---|---|
煤制氢 | 煤约500CNY/t | 0.904 | 2.480 | 0.124 | 1.028 |
天然气制氢 | 天然气约2.5CNY/m3 | 1.478 | 0.890 | 0.045 | 1.522 |
甲醇制氢 | 甲醇约2600CNY/t | 1.942 | 1.225 | 0.061 | 2.003 |
电解水制氢 | 电约0.6CNY/kWh | 3.426 | 2.400 | 0.120 | 3.546 |
焦炉煤气制氢 | 焦炉煤气约0.6CNY/m3 | 0.935 | 0.180 | 0.009 | 0.944 |
炼厂气制氢 | 炼厂气约0.35CNY/m3 | 0.810 | 0.100 | 0.005 | 0.815 |
氯碱尾气制氢 | 氯碱尾气约0.4CNY/m3 | 0.568 | 0.100 | 0.005 | 0.573 |
1 | 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. |
ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation, innovation and vision of “carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46-57 | |
2 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
3 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J/OL]. 化工进展, [2021-08-05]. . |
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J/OL]. Chemical Industry and Engineering Progress, [2021-08-05]. . | |
4 | 李子烨, 劳力云, 王谦. 制氢技术发展现状及新技术的应用进展[J]. 现代化工, 2021, 41(7): 86-89, 94. |
LI Ziye, LAO Liyun, WANG Qian. Development status of hydrogen production technologies and application advances of new technologies[J]. Modern Chemical Industry, 2021,41(7): 86-89, 94. | |
5 | LI Junjie, CHENG Wanjing. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27979-27993. |
6 | 国家统计局. 国家数据-能源[EB/OL]. . |
National Bureau of Statistics of China. National data-energy[EB/OL]. . | |
7 | The editor statistical review of world energy BP p.l.c.statistical review of world energy2021[R]. 2021-07-11. |
8 | 陈健, 王啸. 工业排放气资源化利用研究及工程开发[J]. 天然气化工(C1化学与化工), 2020, 45(2): 121-128. |
CHEN Jian, WANG Xiao. Research progress and engineering development of industrial vent gas resource utilization[J]. Natural Gas Chemical Industry, 2020, 45(2): 121-128. | |
9 | 陈健, 管英富, 伍毅, 等. 典型工业副产气模块化净化提纯关键技术及应用[Z]. 西南化工研究设计院有限公司, 2020-05-10. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=SNAD&filename=SNAD000001863860. |
CHEN Jian,GUAN Yingfu,WU Yi, et al. Key technologies and applications of modular purification and purification of typical industrial by-product gas[Z]. Southwest Institute of Chemical Co., Ltd., 2020-05-10. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=SNAD&filename=SNAD000001863860. | |
10 | 陈健, 焦阳,卜令兵, 等. 炼厂副产氢生产燃料电池用氢气应用研究[J]. 天然气化工(C1化学与化工), 2020, 45(4): 66-70. |
CHEN Jian, JIAO Yang, BU Lingbing, et al. Application of refinery by-product hydrogen to produce hydrogen for fuel cell[J]. Natural Gas Chemical Industry, 2020, 45(4): 66-70. | |
11 | 高桂芳, 刘永博, 沈振峰. 氯酸钠生产中氢气综合利用平衡计算及效益分析[J]. 盐业与化工, 2016, 45(8): 52-54. |
GAO Guifang, LIU Yongbo, SHEN Zhenfeng. Hydrogen utilization balance calculation and benefit analysis of sodium chlorate production[J]. Journal of Salt and Chemical Industry, 2016, 45(8): 52-54. | |
12 | 中盐化工. 2020年度报告[EB/OL]. . |
China Salt Chemical Industry. 2020 annual report [EB/OL]. . | |
13 | 许虹. 氯碱厂副产氢气净化工艺研究与关键装置设计[D]. 北京: 北京化工大学, 2009. |
XU Hong. Purification process research and key device design of byproduct-hydrogen in chlor-alkali plant[D]. Beijing: Beijing University of Chemical Technology, 2009. | |
14 | 中国石油和化学工业联合会. 2020年石油和化学工业经济运行报告[N]. 中国化工报, 2021-03-10. |
China Petroleum and Chemical Industry Federation. 2020 petroleum and chemical industry economic operation report[N]. China Chemical Industry News, 2021-03-10. | |
15 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
16 | 谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. |
XIE Xinshuo, YANG Weijuan, SHI Wei, et al. Life cycle assessment of technologies for hydrogen production—A review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. | |
17 | 中国氢能联盟.中国氢能源及燃料电池产业白皮书[R]. 2020. |
China Hydrogen Alliance. China hydrogen energy and fuel cell industry white paper[R]. 2020. | |
18 | 张彩丽. 煤制氢与天然气制氢成本分析及发展建议[J]. 石油炼制与化工, 2018, 49(1): 94-98. |
ZHANG Caili. Cost analysis and development suggestion for hydrogen production from coal and natural gas[J]. Petroleum Processing and Petrochemicals, 2018, 49(1): 94-98. | |
19 | 毛宗强, 毛志明, 余皓, 等. 制氢工艺与技术[M]. 北京: 化学工业出版社, 2018. |
MAO Zongqiang, MAO Zhiming, YU Hao, et al. Hydrogen production process and technology[M]. Beijing: Chemical Industry Press, 2018. | |
20 | 张轩, 王凯, 樊昕晔, 等. 电解水制氢成本分析[J]. 现代化工, 2021, 41(12): 7-11. |
ZHANG Xuan, WANG Kai, FAN Xinye, et al. Cost analysis on hydrogen production via water electrolysis[J]. Modern Chemical Industry, 2021, 41(12): 7-11. | |
21 | 王周. 天然气制氢、甲醇制氢与水电解制氢的经济性对比探讨[J]. 天然气技术与经济, 2016, 10(6): 47-49. |
WANG Zhou. Discussion on economic comparison of hydrogen production by natural gas, methanol and water electrolysis[J]. Natural Gas Technology and Economy, 2016, 10(6): 47-49. | |
22 | 陈毕杨, 曹尚峰. 焦炉煤气制氢方法的比较及成本分析[J]. 低温与特气, 2017, 35(1): 28-30. |
CHEN Biyang, CAO Shangfeng. Comparison and cost analysis of process of hydrogen production from coke oven cas[J]. Low Temperature and Specialty Gases, 2017, 35(1): 28-30. | |
23 | 苗军, 郭卫军. 氢能的生产工艺及经济性分析[J]. 能源化工, 2020, 41(6): 6-10. |
MIAO Jun, GUO Weijun. Analysis of production technology and economy of hydrogen energy[J]. Energy Chemical Industry, 2020, 41(6): 6-10. | |
24 | 沈威, 杨炜樱. 考虑碳排放的化石能源和电解水制氢成本[J]. 煤气与热力, 2020, 40(3): 30-33, 43. |
SHEN Wei, YANG Weiying. Cost of hydrogen production from fossil energy and electrolyzed water considering carbon emissions[J]. Gas & Heat, 2020, 40(3): 30-33, 43. | |
25 | 徐冬, 孙楠楠, 张九天, 等. 通过耦合碳捕集、利用与封存实现低碳制氢的潜力分析[J]. 热力发电, 2021, 50(10): 53-61. |
XU Dong, SUN Nannan, ZHANG Jiutian, et al. Potential analysis of carbon dioxide capture, utilization and storage equipped low carbon hydrogen production[J]. Thermal Power Generation, 2021, 50(10): 53-61. | |
26 | 上海环境能源交易所. 全国碳市场成交数据[EB/OL]. . |
Shanghai Environment and Energy Exchange. National carbon market transaction data[EB/OL]. . | |
27 | 钟湘生. 单套千万吨级炼油厂氢气平衡分析[J]. 炼油技术与工程, 2011, 41(3): 6-8. |
ZHONG Xiangsheng. Study on hydrogen balance of 20×104b/d petroleum refinery[J]. Petroleum refinery engineering, 2011, 41(3): 6-8. | |
28 | 王琼瑶, 陈宏东, 周正彪. 变压吸附(PSA)分离技术在炼化厂尾气回收中的应用[J]. 当代化工, 2020, 49(4): 676-679. |
WANG Qiongyao, CHEN Hongdong, ZHOU Zhengbiao. Application of pressure swing adsorption (PSA) separation technology in tail gas recovery of refinery and chemical plants[J]. Contemporary Chemical Industry, 2020, 49(4): 676-679. | |
29 | 姬存民, 杨威. 制氢工艺的比较[J]. 氯碱工业, 2019, 55(8): 32-33, 37. |
JI Cunmin, YANG Wei. Comparison of hydrogen production processes[J]. Chlor-Alkali Industry, 2019, 55(8): 32-33, 37. | |
30 | 周国明. 甲醇合成驰放气综合回收利用[J]. 化工设计通讯, 2015, 41(4): 33-34, 40. |
ZHOU Guoming. Comprehensive recovery and utilization of methanol synthesis gas[J]. Chemical Engineering Design Communications, 2015, 41(4): 33-34, 40. | |
31 | 刘增胜, 王天寿. 大型氨厂氢回收装置的现状及评价[J]. 氮肥设计, 1994, 32(6): 37-41. |
LIU Zengsheng, WANG Tianshou. Status and comments on the hydrogen recovery devices of large ammonia plant[J]. Nitrogenous Fertilizer Design, 1994, 32(6): 37-41. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[5] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[6] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[7] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[8] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[9] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[10] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[11] | TAO Li, YANG Qirong, LI Zhaoying, QI Hao, WANG Liwei, MA Xinru. Mechanism of hydrogen production by catalytic pyrolysis of tire rubber based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3010-3021. |
[12] | ZHANG Xuan, FAN Xinye, WU Zhenyu, ZHENG Lijun. Hydrogen energy supply chain cost analysis and suggestions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. |
[13] | FENG Xiang, YANG Chaohe, CHEN De. Boosting renewable hydrogen production from biomass wastes by sorption enhanced reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1107-1110. |
[14] | WAN Lei, XU Zi’ang, WANG Peican, XU Qin, WANG Baoguo. Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1556-1568. |
[15] | FANG Shuqi, WANG Yuqian, LI Pan, CHEN Zhiyong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |