Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 791-802.DOI: 10.16085/j.issn.1000-6613.2021-0487
• Materials science and technology • Previous Articles Next Articles
TANG Jinqiong1,2(), KONG Yong1,2,3(), SHEN Xiaodong1,2,3()
Received:
2021-03-09
Revised:
2021-08-15
Online:
2022-02-23
Published:
2022-02-05
Contact:
KONG Yong,SHEN Xiaodong
唐金琼1,2(), 孔勇1,2,3(), 沈晓冬1,2,3()
通讯作者:
孔勇,沈晓冬
作者简介:
唐金琼(1998—),女,硕士研究生,研究方向为碳基气凝胶材料。E-mail:CLC Number:
TANG Jinqiong, KONG Yong, SHEN Xiaodong. Advances in the synthesis and application of the carbide-derived carbons[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 791-802.
唐金琼, 孔勇, 沈晓冬. 碳化物衍生碳的制备及其应用研究进展[J]. 化工进展, 2022, 41(2): 791-802.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0487
1 | PRESSER V, HEON M, GOGOTSI Y. Carbide-derived carbons-from porous networks to nanotubes and graphene[J]. Advanced Functional Materials, 2011, 21(5): 810-833. |
2 | NAHEED L, KOPPEL M, PAALO M, et al. Hydrogen adsorption properties of carbide-derived carbons at ambient temperature and high pressure[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15761-15772. |
3 | ALMANASSRA I W, KOCHKODAN V, PONNUSAMY G, et al. Carbide derived carbon (CDC) as novel adsorbent for ibuprofen removal from synthetic water and treated sewage effluent[J]. Journal of Environmental Health Science and Engineering, 2020, 18(2): 1375-1390. |
4 | CHENG K Y, NARGARAJ R, BIJUKUMAR D, et al. Improvement of tribocorrosion behavior on titanium alloy by carbide-derived carbon (CDC)[J]. Surface and Coatings Technology, 2020, 392: 125692. |
5 | LILLOJA J, KIBENA-PÕLDSEPP E, SARAPUU A, et al. Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application[J]. Applied Catalysis B: Environmental, 2020, 272: 119012. |
6 | HOFFMAN E N, YUSHIN G, BARSOUM M W, et al. Synthesis of carbide-derived carbon by chlorination of Ti2AlC[J]. Chemistry of Materials, 2005, 17(9): 2317-2322. |
7 | XU J, ZHANG R J, CHEN P, et al. Mechanism of formation and electrochemical performance of carbide-derived carbons obtained from different carbides[J]. Carbon, 2013, 64: 444-455. |
8 | HEIDARPOUR A, AGHAMOHAMMADI H, GHASEMI S. Structural and morphological characterization of the layered carbide-derived-carbon nanostructures obtained by HF etching of Ti2AlC[J]. Synthetic Metals, 2020, 267: 116478. |
9 | 贾进, 杨晓阳, 闫艳, 等. 碳化物衍生碳的制备及其在气体存储与超级电容器领域的应用研究进展[J]. 化工进展, 2014, 33(10): 2681-2686. |
JIA Jin, YANG Xiaoyang, YAN Yan, et al. Progress of preparation of carbide-derived carbon and application in gas storage and supercapacitors[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2681-2686. | |
10 | HOFFMAN E N, YUSHIN G, EL-RAGHY T, et al. Micro and mesoporosity of carbon derived from ternary and binary metal carbides[J]. Microporous and Mesoporous Materials, 2008, 112(1/2/3): 526-532. |
11 | ZHU Y Y, ZHOU A G, JIA J, et al. Synthesis and gas adsorption properties of carbide-derived carbons from titanium tin carbide[J]. Nano, 2016, 11(4): 1650040. |
12 | 徐江. 碳化物衍生碳的形成机理及其超级电容性能研究[D]. 秦皇岛: 燕山大学, 2015. |
XU Jiang. Mechanism of formation and supercapacitive performance of carbide-derived carbon[D]. Qinhuangdao: Yanshan University, 2015. | |
13 | 张静. HCl辅助Cl2刻蚀SiC和WC制备碳化物衍生碳的工艺及机理[D]. 南昌: 南昌大学, 2016. |
ZHANG Jing. Preparation technology and mechanism of carbide-derived carbon by HCl-assisted Cl2 etching SiC and WC[D]. Nanchang: Nanchang University, 2016. | |
14 | BATISSE N, GUÉRIN K, DUBOIS M, et al. Fluorination of silicon carbide thin films using pure F2 gas or XeF2[J]. Thin Solid Films, 2010, 518(23): 6746-6751. |
15 | BATISSE N, GUÉRIN K, DUBOIS M, et al. The synthesis of microporous carbon by the fluorination of titanium carbide[J]. Carbon, 2011, 49(9): 2998-3009. |
16 | GHIMBEU M C, GUERIN K, DUBOIS M, et al. Insights on the reactivity of ordered porous carbons exposed to different fluorinating agents and conditions[J]. Carbon, 2015, 84: 567-583. |
17 | CHRISTIANS H, BRUNNENGRÄBER K, GLÄSEL J, et al. Mesoporous and crystalline carbide-derived carbons: towards a general correlation on synthesis temperature and precursor structure influence[J]. Carbon, 2021, 175: 215-222. |
18 | JACOBSON N S, GOGOTSI Y G, YOSHIMURA M. Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions[J]. Journal of Materials Chemistry, 1995, 5(4): 595. |
19 | KRAFT T, NICKEL K G. Carbon formed by hydrothermal treatment of α-SiC crystals[J]. Journal of Materials Chemistry, 2000, 10(3): 671-680. |
20 | KRAFT T, NICKEL K G, GOGOTSI Y G. Hydrothermal degradation of chemical vapour deposited SiC fibres[J]. Journal of Materials Science, 1998, 33(17): 4357-4364. |
21 | ZHANG H B, PRESSER V, BERTHOLD C, et al. Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide[J]. Journal of the American Ceramic Society, 2010, 93(4): 1148-1155. |
22 | ZHANG H B, PRESSER V, NICKEL K G, et al. Hydrothermal oxidation behavior of bulk titanium aluminum carbide[J]. Journal of the American Ceramic Society, 2011, 94(10): 3460-3466. |
23 | LINCK C, IONESCU E, PAPENDORF B, et al. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions[J]. International Journal of Materials Research, 2012, 103(1): 31-39. |
24 | XI J Q, LIU C, MORGAN D, et al. Deciphering water-solid reactions during hydrothermal corrosion of SiC[J]. Acta Materialia, 2021, 209: 116803. |
25 | SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution[J]. J. Mater. Chem. A, 2017, 5(41): 21663-21668. |
26 | DAI C L, WANG X Y, WANG Y, et al. Synthesis of nanostructured carbon by chlorination of calcium carbide at moderate temperatures and its performance evaluation[J]. Materials Chemistry and Physics, 2008, 112(2): 461-465. |
27 | ZHANG K, TAO S J, XU X B, et al. Preparation of mesoporous carbon materials through mechanochemical reaction of calcium carbide and transition metal chlorides[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6180-6188. |
28 | ZHU H L, BAI Y J, QI Y X, et al. Large-scale synthesis of hollow highly-graphitic carbon nanospheres by the reaction of AlCl3·6H2O with CaC2[J]. Carbon, 2012, 50(5): 1871-1878. |
29 | HAN F D, YAO B, BAI Y J. Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(18): 8923-8927. |
30 | HE R, WANG Z Y, JIN X B. Preparation of graphitic carbon nanosheets by reaction between CO2 and CaC2 for lithium-ion batteries[J]. Carbon, 2017, 116: 246-254. |
31 | LI T, BAI X, GULZAR U, et al. Facile synthesis of highly graphitized carbon via reaction of CaC2 with sulfur and its application for lithium/sodium-ion batteries[J]. ACS Omega, 2019, 4(5): 8312-8317. |
32 | GUO M, CHEN X C, ZHANG X, et al. Molten alkaline synthesis of highly porous carbon from calcium carbide[J]. Microporous and Mesoporous Materials, 2019, 278: 397-402. |
33 | XIE Y G, HUANG Q Z, HUANG B Y. Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid[J]. Carbon, 2009, 47(9): 2292-2295. |
34 | LI Q D, LI Y, CHEN Y, et al. Synthesis of γ-graphyne by mechanochemistry and its electronic structure[J]. Carbon, 2018, 136: 248-254. |
35 | ZHAO B X, SONG C S, WANG F, et al. Facile synthesis of microporous N-doped carbon material and its application in supercapacitor[J]. Microporous and Mesoporous Materials, 2020, 306: 110483. |
36 | BADAMI D V. X-Ray studies of graphite formed by decomposing silicon carbide[J]. Carbon, 1965, 3(1): 53-57. |
37 | NORIMATSU W, HIRATA K, YAMAMOTO Y, et al. Epitaxial growth of boron-doped graphene by thermal decomposition of B4C[J]. Journal of Physics: Condensed Matter, 2012, 24(31): 314207. |
38 | 刘威. 熔盐电解碳素铁合金制备纯净铁合金及碳化物衍生碳研究[D]. 马鞍山: 安徽工业大学, 2017. |
LIU Wei. Study on preparation of pure ferroalloy and carbide derived carbon by the electrolysis of high carbon ferroalloy in molten salts[D]. Ma’anshan: Anhui Universit of Technology, 2017. | |
39 | PANG Z Y, ZOU X L, TANG W, et al. Electrosynthesis of Ti3AlC2-derived porous carbon in molten salt[J]. JOM, 2020, 72(11): 3887-3894. |
40 | PANG Z Y, LI G S, ZOU X L, et al. An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon for high-performance supercapacitors[J]. Journal of Energy Chemistry, 2021, 56: 512-521. |
41 | 郑凯. 熔盐电解-刻蚀制备碳基材料新技术[D]. 上海: 上海大学, 2018. |
ZHENG Kai. A new process for preparing and etching of carbon-based materials in molten salt[D]. Shanghai: Shanghai University, 2018. | |
42 | MALMBERG S, ARULEPP M, SAVEST N, et al. Directly electrospun electrodes for electrical double-layer capacitors from carbide-derived carbon[J]. Journal of Electrostatics, 2020, 103: 103396. |
43 | YEON S H, JUNG K N, YOON S, et al. Electrochemical performance of carbide-derived carbon anodes for lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2013, 74(7): 1045-1055. |
44 | HASSE B, GLÄSEL J, KERN A M, et al. Preparation of carbide-derived carbon supported platinum catalysts[J]. Catalysis Today, 2015, 249: 30-37. |
45 | KRÜNER B, ODENWALD C, TOLOSA A, et al. Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes[J]. Sustainable Energy & Fuels, 2017, 1(7): 1588-1600. |
46 | TEE E, TALLO I, THOMBERG T, et al. Steam and carbon dioxide co-activated silicon carbide-derived carbons for high power density electrical double layer capacitors[J]. Journal of the Electrochemical Society, 2018, 165(10): A2357-A2364. |
47 | CHMIOLA J. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
48 | NAZIR G, REHMAN A, PARK S J. Sustainable N-doped hierarchical porous carbons as efficient CO2 adsorbents and high-performance supercapacitor electrodes[J]. Journal of CO2 Utilization, 2020, 42: 101326. |
49 | YAN P T, YAN L, ZHAO S M, et al. Fluorine-doped graphene/nanosized carbide-derived carbon composites for high-performance supercapacitor[J]. Nano, 2019, 14(8): 1950099. |
50 | GHOSH S, BARG S, JEONG S M, et al. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors[J]. Advanced Energy Materials, 2020, 10(32): 2001239. |
51 | ZERA E, NICKEL W, HAO G P, et al. Nitrogen doped carbide derived carbon aerogels by chlorine etching of a SiCN aerogel[J]. Journal of Materials Chemistry A, 2016, 4(12): 4525-4533. |
52 | PAN J M, SUN H Y, YAN X H, et al. Cube Fe3O4 nanoparticles embedded in three-dimensional net porous carbon from silicon oxycarbide for high performance supercapacitor[J]. Ceramics International, 2020, 46(16): 24805-24815. |
53 | LU C, ZHANG Y S, HU Y X, et al. Ultrafine Mo2C nanoparticles supported on three-dimensional hierarchical porous carbon architecture toward electrochemical energy storage applications[J]. Journal of Energy Storage, 2021, 33: 101855. |
54 | SUN H Y, PAN J M, YAN X H, et al. MnO2 nanoneedles loaded on silicon oxycarbide-derived hierarchically porous carbon for supercapacitor electrodes with enhanced electrochemical performance[J]. Ceramics International, 2019, 45(18): 24802-24810. |
55 | ZHAN C, JIANG D E. Understanding the pseudocapacitance of RuO2 from joint density functional theory[J]. Journal of Physics Condensed Matter, 2016, 28(46): 464004. |
56 | ZHENG L P, WANG Y, WANG X Y, et al. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors[J]. Journal of Power Sources, 2010, 195(6): 1747-1752. |
57 | ZHENG Liping, WANG Xianyou. Application of carbide-derived carbon and conducting polymer composites for supercapacitors[J]. Chemistry, 2011, 74(11): 1013. |
58 | GHALY H A, EL-DEEN A G, SOUAYA E R, et al. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities[J]. Electrochimica Acta, 2019, 310: 58-69. |
59 | GU Y, LIU K, ZHANG X S, et al. Huge enhancement in electrochemical performance of nano carbide-derived carbon obtained by simply room-temperature soaking treatment in HF and HNO3 mixed solution[J]. Journal of Porous Materials, 2019, 26(5): 1241-1248. |
60 | QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6113-6122. |
61 | Öznil BUDAK, GEIßLER M, BECKER D, et al. Carbide-derived niobium pentoxide with enhanced charge storage capacity for use as a lithium-ion battery electrode[J]. ACS Applied Energy Materials, 2020, 3(5): 4275-4285. |
62 | YEON S H, YOON H, LEE S H, et al. Enhanced anode performance of micro/meso-porous reduced graphene oxide prepared from carbide-derived carbon for energy storage devices[J]. Carbon, 2015, 91: 241-251. |
63 | THIEME S, BRÜCKNER J, MEIER A, et al. A lithium-sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive[J]. Journal of Materials Chemistry A, 2015, 3(7): 3808-3820. |
64 | WEI Y J, TAO Y Q, ZHANG C F, et al. Layered carbide-derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries[J]. Electrochimica Acta, 2016, 188: 385-392. |
65 | OSCHATZ M, LEE J T, KIM H, et al. Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes[J]. J. Mater. Chem. A, 2014, 2(41): 17649-17654. |
66 | ERSOY D A, MCNALLAN M J, GOGOTSI Y. Platinum reactions with carbon coatings produced by high temperature chlorination of silicon carbide[J]. Journal of the Electrochemical Society, 2001, 148(12): C774. |
67 | LÜSI M, ERIKSON H, SARAPUU A, et al. Electroreduction of oxygen on carbide-derived carbon supported Pd catalysts[J]. ChemElectroChem, 2020, 7(2): 546-554. |
68 | LUST E, HÄRK E, NERUT J, et al. Pt and Pt-Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports[J]. Electrochimica Acta, 2013, 101: 130-141. |
69 | TEPPOR P, JÄGER R, HÄRK E, et al. Oxygen reduction reaction on nitrogen and cobalt modified silicon carbide derived carbon in acidic media[J]. ECS Transactions, 2018, 85(13): 855-863. |
70 | NOORI M T, VERMA N. Cobalt-iron phthalocyanine supported on carbide-derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells[J]. Electrochimica Acta, 2019, 298: 70-79. |
71 | PRAATS R, KÄÄRIK M, KIKAS A, et al. Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts[J]. Electrochimica Acta, 2020, 334: 135575. |
72 | LILLOJA J, KIBENA-PÕLDSEPP E, SARAPUU A, et al. Transition-metal- and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion-exchange membrane fuel cells[J]. ACS Catalysis, 2021, 11(4): 1920-1931. |
73 | KIRILIN A V, HASSE B, TOKAREV A V, et al. Aqueous-phase reforming of xylitol over Pt/C and Pt/TiC-CDC catalysts: catalyst characterization and catalytic performance[J]. Catal. Sci. Technol., 2014, 4(2): 387-401. |
74 | ZHOU Y H, LI X Y, PAN X L, et al. A highly active and stable Pd-TiO2/CDC-SiC catalyst for hydrogenation of 4-carboxybenzaldehyde[J]. Journal of Materials Chemistry, 2012, 22(28): 14155. |
75 | GLENK F, KNORR T, SCHIRMER M, et al. Synthesis of microporous carbon foams as catalyst supports[J]. Chemical Engineering & Technology, 2010, 33(4): 698-703. |
76 | KRAWIEC P, KOCKRICK E, BORCHARDT L, et al. Ordered mesoporous carbide derived carbons: novel materials for catalysis and adsorption[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7755-7761. |
77 | 王红妍, 王宝冬, 李俊华, 等. 碳化物衍生碳及其在吸附领域中的应用研究进展[J]. 化工进展, 2018, 37(2): 637-643. |
WANG Hongyan, WANG Baodong, LI Junhua, et al. Research progress of carbide-derived carbon and its application in adsorption[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 637-643. | |
78 | 贾进. 碳化物衍生碳的制备及其气体存储性能的研究[D]. 焦作: 河南理工大学, 2015. |
JIA Jin. Progress of preparation of carbide-derived carbon and application in gas storage[D]. Jiaozuo: Henan Polytechnic University, 2015. | |
79 | DYJAK S, KICIŃSKI W, NOREK M, et al. Carbide-derived carbon obtained via bromination of titanium carbide: comparative analysis with chlorination and hydrogen storage studies[J]. Microporous and Mesoporous Materials, 2019, 273: 26-34. |
80 | TIAN M, LENNOX M J, O’MALLEY A J, et al. Effect of pore geometry on ultra-densified hydrogen in microporous carbons[J]. Carbon, 2021, 173: 968-979. |
81 | OSCHATZ M, BOUKHALFA S, NICKEL W, et al. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors[J]. Carbon, 2017, 113: 283-291. |
82 | SEVILLA M, FERRERO G A, FUERTES A B. Nanoporous materials for gas storage: CO2 storage on nanoporous carbons[M]. Singapore: Springer Singapore, 2019: 287-330. |
83 | DUAN L Q, MA Q S, MA L J, et al. Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons[J]. New Carbon Materials, 2019, 34(4): 367-372. |
84 | YACHAMANENI S, YUSHIN G, YEON S H, et al. Mesoporous carbide-derived carbon for cytokine removal from blood plasma[J]. Biomaterials, 2010, 31(18): 4789-4794. |
85 | 姜晓露. 二硫化钼/氧化石墨烯和碳化物衍生碳对水中六价铬的吸附研究[D]. 广州: 华南理工大学, 2017. |
JIANG Xiaolu. Research on adsorption of hexavalent chromium from aqueous solutions onto MoS2/GO and CDC[D]. Guangzhou: South China University of Technology, 2017. | |
86 | WANG H Y, ZHU T L, FAN X, et al. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon, 2014, 67: 712-720. |
87 | CHUN Y S, LIM D S. Carbide derived carbon: from growth to tribological application[J]. Journal of the Ceramic Society of Japan, 2014, 122(1428): 577-585. |
88 | CARROLL B, GOGOTSI Y, KOVALCHENKO A, et al. Effect of humidity on the tribological properties of carbide-derived carbon (CDC) films on silicon carbide[J]. Tribology Letters, 2003, 15(1): 51-55. |
89 | 眭剑, 刘秀芳. 浸油碳化物衍生碳润滑涂层的承载机制研究[J]. 摩擦学学报, 2016, 36(6): 762-768. |
SUI Jian, LIU Xiufang. The load-carrying mechanism of the oil-impregnated carbide-derived carbon coatings[J]. Tribology, 2016, 36(6): 762-768. | |
90 | TLUSTOCHOWICZ M. Dependence of tribology of carbide derived carbon films on humidity[M]. Hoboken: John Wiley & Sons, Inc., 2012: 585-594. |
91 | HOLMBERG K, ERDEMIR A. Influence of tribology on global energy consumption, costs and emissions[J]. Friction, 2017, 5(3): 263-284. |
92 | Tagungsbericht TGA2016[J]. Medizinische Genetik, 2016, 28(2): 277-288. |
93 | ZONDAKA Z, KIVILO A, NAKSHATHARAN S, et al. Carbide-derived carbon and poly-3,4-ethylenedioxythiphene composite laminate: linear and bending actuation[J]. Synthetic Metals, 2018, 245: 67-73. |
94 | ZONDAKA Z, VALNER R, AABLOO A, et al. Embedded carbide-derived carbon (CDC) particles in polypyrrole (PPy) for linear actuator[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, Las Vegas, Nevada. 2016, 9798: 259-265. |
95 | YUSHIN G, HOFFMAN E N, BARSOUM M W, et al. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines[J]. Biomaterials, 2006, 27(34): 5755-5762 |
[1] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[2] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[3] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[4] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[5] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[6] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[7] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[8] | GU Xubo, LIAO Chuanhua, WANG Changqing. Design optimization of supercritical water oxidation energy recovery system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5094-5102. |
[9] | WANG Xing, ZHAO Zilong, ZHANG Xiaoshan, WANG Hongjie, DONG Wenyi, CHEN Huihui. Influence of preparation conditions of biochar-supported iron catalyst on its decomplexation of Ni-EDTA and iron-leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4831-4839. |
[10] | ZENG Junjian, ZHAO Jigang. Research progress of gold based mercury-free catalysts for acetylene hydrochlorination [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3589-3596. |
[11] | ZHANG Yongxiang, WANG Delong, GUO Xiaoyan, SHAO Huaiqi. Structure and performance of CrO x /Ti-Al2O3 catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5879-5886. |
[12] | CHEN Zhiqiang, CHE Chunxia, WU Dengfeng, WEN He, HAN Wei, ZHANG Feng, XU Haoxiang, CHENG Daojian. Advances in catalysts for selective hydrogenation of acetylene [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5390-5405. |
[13] | ZHANG Wenhui, HUA Rui, QI Suitao. Research progress of low temperature Fischer-Tropsch synthetic wax oil hydrocracking refining technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 81-87. |
[14] | DAI Xiaojun, CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress in the synthesis of small particle-size SAPO-11 molecular sieves [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 191-203. |
[15] | DING Xin, ZHANG Dongming, JIAO Weizhou, LIU Youzhi. Research progress of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4918-4930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |