Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 781-790.DOI: 10.16085/j.issn.1000-6613.2021-0597
• Materials science and technology • Previous Articles Next Articles
GUO Guanlun1,2(), LIU Rui1,2, YU Yangyang1,2, WANG Yun3()
Received:
2021-03-24
Revised:
2021-07-02
Online:
2022-02-23
Published:
2022-02-05
Contact:
WANG Yun
郭冠伦1,2(), 刘锐1,2, 余洋洋1,2, 汪云3()
通讯作者:
汪云
作者简介:
郭冠伦(1979—),男,副教授,硕士生导师,研究方向为动力电池性能衰减与安全及新型燃料燃烧与排放机理。E-mail:基金资助:
CLC Number:
GUO Guanlun, LIU Rui, YU Yangyang, WANG Yun. Progress on carbon materials derived from waste plastic for supercapacitors[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 781-790.
郭冠伦, 刘锐, 余洋洋, 汪云. 塑料衍生碳材料用于超级电容器的研究现状[J]. 化工进展, 2022, 41(2): 781-790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0597
合成的材料 | 塑料类型 | 测试系统 | 电解质 | 比电容/F·g-1 | 扫描电压或电流密度 | 参考文献 |
---|---|---|---|---|---|---|
Carbon-3∶1 | PET | 三电极 | 6mol/L KOH | 402 | 1A/g | [ |
Carbon-2∶1∶2 | PTFE | 三电极 | 6mol/L KOH | 237 | 1A/g | [ |
PTFE-1∶1-700 | PTFE | 三电极 | 6mol/L KOH | 33.5 | 1A/g | [ |
PVC-1∶1-700 | PVC | 三电极 | 6mol/L KOH | 31.7 | 1A/g | [ |
PVDF-1∶1-700 | PVDF | 三电极 | 6mol/L KOH | 89.6 | 1A/g | [ |
PCF | PS | 三电极 | 6mol/L KOH | 126 | 1mV/s | [ |
PCF-mol/LnO2 | PS | 三电极 | 6mol/L KOH | 308 | 1mV/s | [ |
NG | PET | 两电极 | 6mol/L KOH | 405 | 1A/g | [ |
PCNS | PET | 两电极 | 6mol/L KOH | 169 | — | [ |
NiO x @NPC | PET | 三电极 | 6mol/L KOH | 581.3 | 5mV/s | [ |
ZnO@MC | PET | 两电极 | 6mol/L KOH | 97 | 5mV/s | [ |
Co3O4@MC | PET | 两电极 | 6mol/L KOH | 180 | 5mV/s | [ |
N-MC | PET | 三电极 | 6mol/L KOH | 295 | 0.5A/g | [ |
P750 | PET | 两电极 | 6mol/L KOH | 32.6 | 2.5mA/cm2 | [ |
PCS-MnO2 | PET | 三电极 | 6mol/L KOH | 210.5 | 0.5A/g | [ |
HPC | PET | 三电极 | 6mol/L KOH | 413±19 | 0.5A/g | [ |
PAC/MoS2 | PET | 三电极 | 0.5mol/L Na2SO4 | 214 | — | [ |
PAC/MoS2//C | PET | 三电极 | 0.5mol/L Na2SO4 | 288 | — | [ |
AC-K | PET | 三电极 | 6mol/L KOH | 325 | 0.5A/g | [ |
PMC-700 | PET | 三电极 | 6mol/L KOH | 296 | 1A/g | [ |
活性炭 | LDPE | 两电极 | 1mol/L TEABF4/PC | 20 | — | [ |
HPC | LDPE | 三电极 | 6mol/L KOH | 355 | 0.2A/g | [ |
PE-HPC-900NH3 | PE | 三电极 | 6mol/L KOH | 244 | 0.2A/g | [ |
ANC | PVC | 三电极 | 6mol/L KOH | 345 | 50mA/g | [ |
PW-C | PVC | 三电极 | 6mol/L KOH | 399 | 1A/g | [ |
GN | 混合塑料 | 两电极 | 1mol/L H3PO4 | 398 | 0.005V/s | [ |
CMS-3 | PP | 三电极 | 6mol/L KOH | 328.9 | 1A/g | [ |
3D网状多孔碳 | PS | 三电极 | 6mol/L KOH | 208 | 1A/g | [ |
N-PCN | PS | 三电极 | 6mol/L KOH | 149 | 0.5A/g | [ |
PCF-MnO2 | PS | 两电极 | 5mol/L LiCl | 308 | 1mV/s | [ |
CNS | PS | 三电极 | 6mol/L KOH | 323 | 0.5A/g | [ |
U-3DHPC | PS | 三电极 | 6mol/L KOH | 284.1 | 0.5A/g | [ |
PCS-3 | PS | 两电极 | 1mol/L H2SO4 | 135 | 1mV/s | [ |
SPC8H | PS | 三电极 | 3mol/L KOH | 158 | 1A/g | [ |
PTFE-1∶3-700 | PTFE | 三电极 | 6mol/L KOH | 313.7 | 0.5A/g | [ |
PVDF-1∶3-700 | PVDF | 三电极 | 6mol/L KOH | 126.7 | 0.5A/g | [ |
PVC-1∶3-700 | PVC | 三电极 | 6mol/L KOH | 41.9 | 0.5A/g | [ |
NS-DCM | PVDC | 三电极 | 1mol/L H2SO4 | 427 | 1.0A/g | [ |
PUUPC-800-2 | PU | 三电极 | 1mol/L Li2SO4 | 99 | 0.1A/g | [ |
合成的材料 | 塑料类型 | 测试系统 | 电解质 | 比电容/F·g-1 | 扫描电压或电流密度 | 参考文献 |
---|---|---|---|---|---|---|
Carbon-3∶1 | PET | 三电极 | 6mol/L KOH | 402 | 1A/g | [ |
Carbon-2∶1∶2 | PTFE | 三电极 | 6mol/L KOH | 237 | 1A/g | [ |
PTFE-1∶1-700 | PTFE | 三电极 | 6mol/L KOH | 33.5 | 1A/g | [ |
PVC-1∶1-700 | PVC | 三电极 | 6mol/L KOH | 31.7 | 1A/g | [ |
PVDF-1∶1-700 | PVDF | 三电极 | 6mol/L KOH | 89.6 | 1A/g | [ |
PCF | PS | 三电极 | 6mol/L KOH | 126 | 1mV/s | [ |
PCF-mol/LnO2 | PS | 三电极 | 6mol/L KOH | 308 | 1mV/s | [ |
NG | PET | 两电极 | 6mol/L KOH | 405 | 1A/g | [ |
PCNS | PET | 两电极 | 6mol/L KOH | 169 | — | [ |
NiO x @NPC | PET | 三电极 | 6mol/L KOH | 581.3 | 5mV/s | [ |
ZnO@MC | PET | 两电极 | 6mol/L KOH | 97 | 5mV/s | [ |
Co3O4@MC | PET | 两电极 | 6mol/L KOH | 180 | 5mV/s | [ |
N-MC | PET | 三电极 | 6mol/L KOH | 295 | 0.5A/g | [ |
P750 | PET | 两电极 | 6mol/L KOH | 32.6 | 2.5mA/cm2 | [ |
PCS-MnO2 | PET | 三电极 | 6mol/L KOH | 210.5 | 0.5A/g | [ |
HPC | PET | 三电极 | 6mol/L KOH | 413±19 | 0.5A/g | [ |
PAC/MoS2 | PET | 三电极 | 0.5mol/L Na2SO4 | 214 | — | [ |
PAC/MoS2//C | PET | 三电极 | 0.5mol/L Na2SO4 | 288 | — | [ |
AC-K | PET | 三电极 | 6mol/L KOH | 325 | 0.5A/g | [ |
PMC-700 | PET | 三电极 | 6mol/L KOH | 296 | 1A/g | [ |
活性炭 | LDPE | 两电极 | 1mol/L TEABF4/PC | 20 | — | [ |
HPC | LDPE | 三电极 | 6mol/L KOH | 355 | 0.2A/g | [ |
PE-HPC-900NH3 | PE | 三电极 | 6mol/L KOH | 244 | 0.2A/g | [ |
ANC | PVC | 三电极 | 6mol/L KOH | 345 | 50mA/g | [ |
PW-C | PVC | 三电极 | 6mol/L KOH | 399 | 1A/g | [ |
GN | 混合塑料 | 两电极 | 1mol/L H3PO4 | 398 | 0.005V/s | [ |
CMS-3 | PP | 三电极 | 6mol/L KOH | 328.9 | 1A/g | [ |
3D网状多孔碳 | PS | 三电极 | 6mol/L KOH | 208 | 1A/g | [ |
N-PCN | PS | 三电极 | 6mol/L KOH | 149 | 0.5A/g | [ |
PCF-MnO2 | PS | 两电极 | 5mol/L LiCl | 308 | 1mV/s | [ |
CNS | PS | 三电极 | 6mol/L KOH | 323 | 0.5A/g | [ |
U-3DHPC | PS | 三电极 | 6mol/L KOH | 284.1 | 0.5A/g | [ |
PCS-3 | PS | 两电极 | 1mol/L H2SO4 | 135 | 1mV/s | [ |
SPC8H | PS | 三电极 | 3mol/L KOH | 158 | 1A/g | [ |
PTFE-1∶3-700 | PTFE | 三电极 | 6mol/L KOH | 313.7 | 0.5A/g | [ |
PVDF-1∶3-700 | PVDF | 三电极 | 6mol/L KOH | 126.7 | 0.5A/g | [ |
PVC-1∶3-700 | PVC | 三电极 | 6mol/L KOH | 41.9 | 0.5A/g | [ |
NS-DCM | PVDC | 三电极 | 1mol/L H2SO4 | 427 | 1.0A/g | [ |
PUUPC-800-2 | PU | 三电极 | 1mol/L Li2SO4 | 99 | 0.1A/g | [ |
1 | UTETIWABO W , YANG L , TUFAIL M K , et al . Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors[J]. Chinese Chemical Letters, 2020, 31(6): 1474-1489. |
2 | 姜文明 . 基于固废高分子材料制备多孔炭材料及其电化学性能研究[D]. 镇江: 江苏大学, 2015. |
JIANG Wenming . Study on the synthesis of porous carbon materials derived from polymer wastes and the electrochemical performance[D]. Zhenjiang: Jiangsu University, 2015. | |
3 | 闵嘉康 . 聚苯乙烯模板碳化反应在制备储能器件电极材料中的应用[D]. 北京: 中国科学院大学, 2018. |
MIN Jiakang . Application of template carbonization of polystyrene in energy storage devices[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
4 | 曹玉亭, 张锦赓 . 废旧塑料的再生利用[J]. 当代化工, 2011, 40(2): 190-192. |
CAO Yuting , ZHANG Jingeng . Recycling and reusing of waste plastic[J]. Contemporary Chemical Industry, 2011, 40(2): 190-192. | |
5 | WANG G P , ZHANG L , ZHANG J J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
6 | SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
7 | SHI H . Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41(10): 1633-1639. |
8 | MA T Y , LIU L , YUAN Z Y . Direct synthesis of ordered mesoporous carbons[J]. Chemical Society Reviews, 2013, 42(9): 3977-4003. |
9 | MENG Y , GU D , ZHANG F Q , et al . Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angewandte Chemie, 2005, 117(43): 7215-7221. |
10 | JAIN A , BALASUBRAMANIAN R , SRINIVASAN M P . Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review[J]. Chemical Engineering Journal, 2016, 283: 789-805. |
11 | YOSHIDA S , HIRAGA K , TAKEHANA T , et al . A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
12 | ELESSAWY N A , NADY J EL , WAZEER W , et al . Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene[J]. Scientific Reports, 2019, 9: 1129. |
13 | WEN Y L , KIERZEK K , MIN J K , et al . Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications[J]. Journal of Applied Polymer Science, 2020, 137(5): 48338. |
14 | AL-ENIZI A M , UBAIDULLAH M , AHMED J , et al . Synthesis of NiO x @NPC composite for high-performance supercapacitor via waste PET plastic-derived Ni-MOF[J]. Composites Part B: Engineering, 2020, 183: 107655. |
15 | AL-ENIZI A M , AHMED J , UBAIDULLAH M , et al . Utilization of waste polyethylene terephthalate bottles to develop metal-organic frameworks for energy applications: a clean and feasible approach[J]. Journal of Cleaner Production, 2020, 248: 119251. |
16 | UBAIDULLAH M , AL-ENIZI A M , AHAMAD T , et al . Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor[J]. Journal of Energy Storage, 2021, 33: 102125. |
17 | MIRJALILI A , DONG B , PENA P , et al . Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage[J]. Energy Storage, 2020, 2(6): e201. |
18 | MU X Y , LI Y H , LIU X G , et al . Controllable carbonization of plastic waste into three-dimensional porous carbon nanosheets by combined catalyst for high performance capacitor[J]. Nanomaterials, 2020, 10(6): 1097. |
19 | LIU X G , WEN Y L , CHEN X C , et al . Co-etching effect to convert waste polyethylene terephthalate into hierarchical porous carbon toward excellent capacitive energy storage[J]. Science of the Total Environment, 2020, 723: 138055. |
20 | SANGEETHA D N , SANTOSH M S , SELVAKUMAR M . Flower-like carbon doped MoS2/activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions[J]. Journal of Alloys and Compounds, 2020, 831: 154745. |
21 | ZHANG H , ZHOU X L , SHAO L M , et al . Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation[J]. The Science of the Total Environment, 2021, 772: 145309. |
22 | ZHU H . Preparation and electrochemical properties of porous carbon materials derived from waste plastic foam and their application for supercapacitors[J]. International Journal of Electrochemical Science, 2021: 210343. |
23 | LEE H M , KANG S J , KIM B J . Electrochemical behaviors LDPE-based activated carbon by steam activation[J]. Functional Nanostructures Proceedings, 2017: www.onecentralpress.com/. |
24 | ZHANG H , ZHOU X L , SHAO L M , et al . Hierarchical porous carbon spheres from low-density polyethylene for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3801-3810. |
25 | LIAN Y M , NI M , HUANG Z H , et al . Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 313-320. |
26 | LIAN Y M , UTETIWABO W , ZHOU Y D , et al . From upcycled waste polyethylene plastic to graphene/mesoporous carbon for high-voltage supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 557: 55-64. |
27 | SUN L , WANG C L , ZHOU Y , et al . Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2014, 18(1): 49-58. |
28 | CHANG Y N , PANG Y C , DANG Q D , et al . Converting polyvinyl chloride plastic wastes to carbonaceous materials via room-temperature dehalogenation for high-performance supercapacitor[J]. ACS Applied Energy Materials, 2018, 1(10): 5685-5693. |
29 | PANDEY S , KARAKOTI M , SURANA K , et al . Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors[J]. Scientific Reports, 2021, 11: 3916. |
30 | HU X , LIN Z D . Transforming waste polypropylene face masks into S-doped porous carbon as the cathode electrode for supercapacitors[J]. Ionics, 2021, 27(5): 2169-2179. |
31 | ZHANG Y X , SHEN Z M , YU Y F , et al . Porous carbon derived from waste polystyrene foam for supercapacitor[J]. Journal of Materials Science, 2018, 53(17): 12115-12122. |
32 | WANG G X , LIU L , ZHANG L L , et al . Porous carbon nanosheets prepared from plastic wastes for supercapacitors[J]. Journal of Electronic Materials, 2018, 47(10): 5816-5824. |
33 | MIN J K , ZHANG S , LI J X , et al . From polystyrene waste to porous carbon flake and potential application in supercapacitor[J]. Waste Management, 2019, 85: 333-340. |
34 | MA C D , LIU X G , MIN J K , et al . Sustainable recycling of waste polystyrene into hierarchical porous carbon nanosheets with potential applications in supercapacitors[J]. Nanotechnology, 2020, 31(3): 035402. |
35 | MA C D , MIN J K , GONG J , et al . Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors[J]. Chemosphere, 2020, 253: 126755. |
36 | WEN Y L , WEN X , WENELSKA K , et al . Novel strategy for preparation of highly porous carbon sheets derived from polystyrene for supercapacitors[J]. Diamond and Related Materials, 2019, 95: 5-13. |
37 | URGUNDE A B , BAHUGUNA G , DHAMIJA A , et al . Ni ink-catalyzed conversion of a waste polystyrene-sugar composite to graphitic carbon for electric double-layer supercapacitors[J]. ACS Applied Electronic Materials, 2020, 2(10): 3178-3186. |
38 | CHEN X Y , CHENG L X , DENG X , et al . Generalized conversion of halogen-containing plastic waste into nanoporous carbon by a template carbonization method[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 6990-6997. |
39 | CHANG Y N , ZHANG G X , HAN B , et al . Polymer dehalogenation-enabled fast fabrication of N, S-codoped carbon materials for superior supercapacitor and deionization applications[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29753-29759. |
40 | SCHNEIDERMANN C , OTTO P , LEISTENSCHNEIDER D , et al . Upcycling of polyurethane waste by mechanochemistry: synthesis of N-doped porous carbon materials for supercapacitor applications[J]. Beilstein Journal of Nanotechnology, 2019, 10: 1618-1627. |
[1] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[2] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[3] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[4] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[5] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[6] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[7] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[8] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[9] | ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, YANG Xuan, LU Beili, CHEN Yandan. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933. |
[10] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[11] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[12] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
[13] | LIU Nan, HU Yiming, YANG Ying, LI Hongjin, GAO Zhuqing, HAO Xiuli. Microwave assisted co-pyrolysis of waste polypropylene /activated carbon to produce combustible pyrolysis gas and light pyrolysis oil [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 150-159. |
[14] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[15] | JIN Wei. Microporous carbon modified separator for high performance lithium sulfur batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4386-4396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |