Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5677-5684.DOI: 10.16085/j.issn.1000-6613.2022-0023
• Resources and environmental engineering • Previous Articles Next Articles
LIU Yang(), HUANG Yaji(), DONG Xinxin, DING Xueyu, YANG Xiaoyu, WANG Xinyu, ZHANG Zhenrong, CAO Gehan, LI Zhiyuan, TIAN Xinqi
Received:
2022-01-04
Revised:
2022-05-31
Online:
2022-10-21
Published:
2022-10-20
Contact:
HUANG Yaji
刘洋(), 黄亚继(), 董新新, 丁雪宇, 杨晓域, 王新宇, 张臻荣, 曹歌瀚, 李志远, 田新启
通讯作者:
黄亚继
作者简介:
刘洋(1997—),男,硕士研究生,研究方向为固体废弃物处理。E-mail:220190405@seu.edu.cn。
基金资助:
CLC Number:
LIU Yang, HUANG Yaji, DONG Xinxin, DING Xueyu, YANG Xiaoyu, WANG Xinyu, ZHANG Zhenrong, CAO Gehan, LI Zhiyuan, TIAN Xinqi. In-situ sulfur fixation performance of Ca-Fe composite metal oxides during gasification of combustible municipal solid waste[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5677-5684.
刘洋, 黄亚继, 董新新, 丁雪宇, 杨晓域, 王新宇, 张臻荣, 曹歌瀚, 李志远, 田新启. 可燃生活垃圾气化Ca-Fe复合金属氧化物的原位固硫性能[J]. 化工进展, 2022, 41(10): 5677-5684.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0023
名称 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分Mad | 灰分Aad | 挥发分Vad | 固定碳FCad | Cad | Had | Oad | Nad | Sad | ||
橡胶 | 0.90 | 5.50 | 91.62 | 1.98 | 77.35 | 8.79 | 5.98 | 6.78 | 0.781 | |
纸类 | 10.05 | 0.41 | 76.78 | 12.76 | 45.31 | 6.10 | 45.99 | 0.17 | 0.155 | |
塑料 | 0.01 | 0.01 | 99.77 | 0.21 | 91.62 | 7.61 | 1.54 | 0.09 | 0.015 | |
织物 | 5.73 | 0.24 | 86.98 | 7.05 | 42.30 | 6.19 | 50.37 | 0.24 | 0.056 | |
木屑 | 18.31 | 1.40 | 68.79 | 11.05 | 41.94 | 5.48 | 42.69 | 0.17 | 0.043 | |
厨余 | 13.10 | 0.41 | 77.12 | 9.37 | 39.42 | 6.57 | 50.02 | 1.19 | 0.085 | |
混合样 | 6.21 | 0.61 | 85.57 | 5.91 | 61.05 | 6.91 | 29.61 | 0.86 | 0.103 |
名称 | 工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
水分Mad | 灰分Aad | 挥发分Vad | 固定碳FCad | Cad | Had | Oad | Nad | Sad | ||
橡胶 | 0.90 | 5.50 | 91.62 | 1.98 | 77.35 | 8.79 | 5.98 | 6.78 | 0.781 | |
纸类 | 10.05 | 0.41 | 76.78 | 12.76 | 45.31 | 6.10 | 45.99 | 0.17 | 0.155 | |
塑料 | 0.01 | 0.01 | 99.77 | 0.21 | 91.62 | 7.61 | 1.54 | 0.09 | 0.015 | |
织物 | 5.73 | 0.24 | 86.98 | 7.05 | 42.30 | 6.19 | 50.37 | 0.24 | 0.056 | |
木屑 | 18.31 | 1.40 | 68.79 | 11.05 | 41.94 | 5.48 | 42.69 | 0.17 | 0.043 | |
厨余 | 13.10 | 0.41 | 77.12 | 9.37 | 39.42 | 6.57 | 50.02 | 1.19 | 0.085 | |
混合样 | 6.21 | 0.61 | 85.57 | 5.91 | 61.05 | 6.91 | 29.61 | 0.86 | 0.103 |
CaO∶Fe2O3 | BET比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
1∶1 | 8.0936 | 0.0361 | 29.7107 |
2∶1 | 7.6769 | 0.0476 | 26.2253 |
3∶1 | 5.4052 | 0.0505 | 25.8667 |
1∶2 | 5.8046 | 0.0285 | 20.1726 |
1∶3 | 3.7019 | 0.0180 | 22.0413 |
CaO∶Fe2O3 | BET比表面积/m2·g-1 | 孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
1∶1 | 8.0936 | 0.0361 | 29.7107 |
2∶1 | 7.6769 | 0.0476 | 26.2253 |
3∶1 | 5.4052 | 0.0505 | 25.8667 |
1∶2 | 5.8046 | 0.0285 | 20.1726 |
1∶3 | 3.7019 | 0.0180 | 22.0413 |
编号 | 停留时间/min | 组分名称 | 化学式 |
---|---|---|---|
a | 11.688 | phenol(苯酚) | C6H5OH |
b | 13.709 | naphthalene(萘) | C10H8 |
c | 15.598 | naphthalene,1-methyl-(1-甲基萘) | C11H10 |
d | 15.891 | naphthalene,2-methyl-(2-甲基萘) | C11H10 |
e | 16.822 | biphenyl(联苯) | C12H10 |
f | 17.595 | diphenylemthane(二苯基甲烷) | C13H12 |
1 | 19.291 | bibenzyl(联苄) | C14H14 |
2 | 19.721 | benzene,1,1′-(1-methyl-1,2-ethanediyl)bis- (1,2-二苯基丙烷) | C15H16 |
3 | 21.624 | benzene,1,1′-(1,3-propanediyl)bis- (1,3-二苯基丙烷) | C15H16 |
4 | 22.742 | N-benzyl-1H-benzimidazole (N-苄基苯并咪唑) | C14H12N2 |
5 | 23.258 | (E)-stilbene [(E)-二苯乙烯] | C14H12 |
6 | 25.444 | phenanthrene(菲) | C14H10 |
7 | 25.832 | naphthalene,1-phenyl-(1-苯基萘) | C16H12 |
8 | 29.989 | naphthalene,2-phenyl-(2-苯基萘) | C16H12 |
编号 | 停留时间/min | 组分名称 | 化学式 |
---|---|---|---|
a | 11.688 | phenol(苯酚) | C6H5OH |
b | 13.709 | naphthalene(萘) | C10H8 |
c | 15.598 | naphthalene,1-methyl-(1-甲基萘) | C11H10 |
d | 15.891 | naphthalene,2-methyl-(2-甲基萘) | C11H10 |
e | 16.822 | biphenyl(联苯) | C12H10 |
f | 17.595 | diphenylemthane(二苯基甲烷) | C13H12 |
1 | 19.291 | bibenzyl(联苄) | C14H14 |
2 | 19.721 | benzene,1,1′-(1-methyl-1,2-ethanediyl)bis- (1,2-二苯基丙烷) | C15H16 |
3 | 21.624 | benzene,1,1′-(1,3-propanediyl)bis- (1,3-二苯基丙烷) | C15H16 |
4 | 22.742 | N-benzyl-1H-benzimidazole (N-苄基苯并咪唑) | C14H12N2 |
5 | 23.258 | (E)-stilbene [(E)-二苯乙烯] | C14H12 |
6 | 25.444 | phenanthrene(菲) | C14H10 |
7 | 25.832 | naphthalene,1-phenyl-(1-苯基萘) | C16H12 |
8 | 29.989 | naphthalene,2-phenyl-(2-苯基萘) | C16H12 |
1 | 刘全美, 常加富, 张兆玲, 等. 生活垃圾热解气化燃烧试验研究[J]. 化工管理, 2021(16): 96-98. |
LIU Quanmei, CHANG Jiafu, ZHANG Zhaoling, et al. Experimental study on pyrolysis gasification and combustion of domestic wastes[J]. Chemical Enterprise Management, 2021(16): 96-98. | |
2 | OUDA O K M, RAZA S A, NIZAMI A S, et al. Waste to energy potential: a case study of Saudi Arabia[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 328-340. |
3 | TOZLU A, ÖZAHI E, ABUŞOĞLU A. Waste to energy technologies for municipal solid waste management in Gaziantep[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 809-815. |
4 | MAKARICHI L, JUTIDAMRONGPHAN W, TECHATO K A. The evolution of waste-to-energy incineration: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 812-821. |
5 | 郭浩. 城市生活垃圾处理技术现状及未来发展趋势[J]. 云南化工, 2020, 47(9): 21-22, 25. |
GUO Hao. The Current situation and development trend of municipal living garbage treatment technology[J]. Yunnan Chemical Technology, 2020, 47(9): 21-22, 25. | |
6 | 蒋旭光, 龙凌, 赵晓利, 等. 固化材料在生活垃圾焚烧飞灰处置中的应用概况及前景[J]. 化工进展, 2019, 38(S1): 216-225. |
JIANG Xuguang, LONG Ling, ZHAO Xiaoli, et al. Application of solidified materials in disposal of MSWI fly ash[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 216-225. | |
7 | 袁国安. 生活垃圾热解气化技术应用现状与展望[J]. 环境与可持续发展, 2019, 44(4): 66-69. |
YUAN Guo’an. Present status and prospect of municipal solid waste pyrolysis and gasification technology[J]. Environment and Sustainable Development, 2019, 44(4): 66-69. | |
8 | 刘雪珂, 段盼巧, 党文达, 等. 生活垃圾焚烧中SO x 的生成及控制技术进展[J]. 广东化工, 2021, 48(22): 176-177. |
LIU Xueke, DUAN Panqiao, DANG Wenda, et al. The generation and control technology progress of SO x for municipal solid waste incineration[J]. Guangdong Chemical Industry, 2021, 48(22): 176-177. | |
9 | 赵嘉博, 刘小军. 洁净煤技术的研究现状及进展[J]. 露天采矿技术, 2011, 26(1): 66-69. |
ZHAO Jiabo, LIU Xiaojun. Present research status and development of clean coal technology[J]. Opencast Mining Technology, 2011, 26(1): 66-69. | |
10 | 邹洋, 夏凌风, 王运东, 等. 燃煤电厂烟气脱硫技术最新进展[J]. 化工进展, 2011, 30(S1): 702-708. |
ZOU Yang, XIA Lingfeng, WANG Yundong, et al. Recent advances in flue gas desulphurization in coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 702-708. | |
11 | 张海霞, 李爱民, 杨继文. 垃圾焚烧发电技术在我国的应用前景及存在问题初探[J]. 化工进展, 2010, 29(S1): 91-95. |
ZHANG Haixia, LI Aimin, YANG Jiwen. Application prospect and existing problems of waste incineration power generation technology in China [J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 91-95. | |
12 | 王学涛, 金保升, 仲兆平, 等. 城市生活垃圾焚烧底灰熔融处理实验研究[J]. 东南大学学报(自然科学版), 2005, 35(1): 111-115. |
WANG Xuetao, JIN Baosheng, ZHONG Zhaoping, et al. Study on melting treatment of bottom ashes from municipal solid waste incinerator[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(1): 111-115. | |
13 | 章骅, 何品晶. 城市生活垃圾焚烧灰渣及其性质分析[J]. 上海环境科学, 2002(6): 356-360, 389. |
ZHANG Hua, HE Pinjing. Municipal solid waste incineration ashes and their properties[J]. Shanghai Environmental Sciences, 2002(6): 356-360, 389. | |
14 | HE D L, GONG H F, CHEN Y F, et al. Experimental and density functional theory study of the synergistic effect between steam and SO2 on CO2 capture of calcium-based sorbents[J]. Fuel, 2021, 295: 120634. |
15 | SONG Y J, WANG T, CHENG L, et al. Simultaneous removal of SO2 and NO by CO reduction over prevulcanized Fe2O3/AC catalysts[J]. The Canadian Journal of Chemical Engineering, 2019, 97(7): 2015-2020. |
16 | YI K X, LIU H, WANG J X, et al. The adsorption and transformation of SO2, H2S and NH3 by using sludge gasification ash: effects of Fenton oxidation and CaO pre-conditioning[J]. Chemical Engineering Journal, 2019, 360: 1498-1508. |
17 | WANG H M, LIU G C, VEKSHA A, et al. Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides[J]. Energy, 2021, 218: 119548. |
18 | DASHTESTANI F, NUSHEH M, SIRIWONGRUNGSON V, et al. Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent[J]. Fuel, 2021, 295: 120586. |
19 | 黄波, 段静, 朱书全. 氧化铁和氧化钛对水煤浆燃烧固硫的促进作用[J]. 煤炭工程, 2005, 37(5): 74-76. |
HUANG Bo, DUAN Jing, ZHU Shuquan. Accelerative function of ferric oxide and titanium oxide to sulfur catching from combustion of coal water mixture[J]. Coal Engineering, 2005, 37(5): 74-76. | |
20 | 董隽. 城市生活垃圾热解气化特性及全过程多目标评价方法研究[D]. 杭州: 浙江大学, 2016. |
DONG Jun. Study on municipal solid waste pvrolvsis and gasification characteristics and life cycle multi-objective assessment methodology[D]. Hangzhou: Zhejiang University, 2016. | |
21 | ZOU C, KANG Y, WANG W A, et al. Effects of Fe2O3-CaO interactions in metallurgical dust on its catalytic activity for the carbon-oxygen reaction[J]. Energy & Fuels, 2019, 33(11): 11830-11840. |
22 | MARTÍN-MARTÍN J A, GALLASTEGI-VILLA M, GONZÁLEZ-MARCOS M P, et al. Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation[J]. Chemical Engineering Journal, 2021, 417: 129013. |
23 | HANIF A, SUN M Z, WANG T Q, et al. Ambient NO2 adsorption removal by Mg-Al layered double hydroxides and derived mixed metal oxides[J]. Journal of Cleaner Production, 2021, 313: 127956. |
24 | HOSSEINI-ESHBALA F, SEDRPOUSHAN A, DEHDASHTI M N, et al. Needle ball-like nanostructured mixed Cu-Ni-Co oxides: synthesis, characterization and application to the selective oxidation of sulfides to sulfoxides[J]. Materials Science and Engineering: C, 2019, 103: 109814. |
25 | 范文军. 糯米浆-石灰复合材料固化遗址土吸水与失水特性研究[D]. 兰州: 兰州大学, 2021. |
FAN Wenjun. Study on water absorption and water loss characteristics of soil consolidated by sticky rice-lime composites for earthen site[D]. Lanzhou: Lanzhou University, 2021. | |
26 | XIAN S X, FAN Y Q, ZHANG H X, et al. Effects of temperature and limestone on sulfur release behaviors during fluidized bed gasification[J]. Journal of the Energy Institute, 2020, 93(5): 2074-2083. |
[1] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[2] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[3] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[4] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
[5] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[6] | CHEN Jiakun, TANG Jian, XIA Heng, QIAO Junfei. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072. |
[7] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
[8] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
[9] | FANG Kejing, XIONG Zuhong, LU Min, LI Tao, CHEN Yong. Research progress in preparation, thermal conversion characteristics and application of refuse derived fuel [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 132-140. |
[10] | ZHANG Qian, GAO Zenglin, WANG Dong, PENG Zeyu, HAO Zeguang, HUANG Wei. Thermal chemical reaction behavior of the coal maceral concentrates [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 160-167. |
[11] | FU Chunlong, WANG Songjiang, LI Guozhi. Research progress on combustion technology of coal gasification fine slag [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 516-523. |
[12] | GUO Fanhui, WU Jianjun, ZHANG Haijun, GUO Yang, LIU Hu, ZHANG Yixin. Coal gasification fine slag vacuum dewatering by ceramic membrane and numerical simulation [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4047-4056. |
[13] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[14] | ZHANG Ningning, DING Hua, GAO Yan, BAI Xiangfei, ZHANG Yunpeng, SUN Nanxiang. Migration behavior of sodium in Xinjiang Naomaohu coal during the CO2 gasification [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2348-2355. |
[15] | WANG Siyi, LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun. Gasification of sewage sludge and its model compounds with NTP-DBD: effect of atmosphere on product distribution and properties [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2150-2160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |