Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 132-140.DOI: 10.16085/j.issn.1000-6613.2022-0700
• Energy processes and technology • Previous Articles Next Articles
FANG Kejing1,2,3(), XIONG Zuhong1,2,3(), LU Min1,2,3, LI Tao1,2,3, CHEN Yong1,2,3
Received:
2022-04-19
Revised:
2022-06-10
Online:
2022-11-10
Published:
2022-10-20
Contact:
XIONG Zuhong
房科靖1,2,3(), 熊祖鸿1,2,3(), 鲁敏1,2,3, 黎涛1,2,3, 陈勇1,2,3
通讯作者:
熊祖鸿
作者简介:
房科靖(1990—),男,硕士,工程师,研究方向为固体废弃物资源化利用。E-mail:fangkj@ms.giec.ac.cn。
CLC Number:
FANG Kejing, XIONG Zuhong, LU Min, LI Tao, CHEN Yong. Research progress in preparation, thermal conversion characteristics and application of refuse derived fuel[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 132-140.
房科靖, 熊祖鸿, 鲁敏, 黎涛, 陈勇. 垃圾衍生燃料的制备、热转化特性及应用研究进展[J]. 化工进展, 2022, 41(S1): 132-140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0700
分类 | 内容 | 备注 |
---|---|---|
RDF-1 | 将生活垃圾中的大件垃圾除去得到的可燃固体废弃物 | 疏松RDF |
RDF-2 | 将生活垃圾中去除金属和玻璃,粗碎通过152mm的筛后得到的可燃固体废弃物 | 疏松RDF |
RDF-3 | 将生活垃圾中去除金属和玻璃,粗碎通过50mm的筛后得到的可燃固体废弃物 | 疏松RDF |
RDF-4 | 将生活垃圾中去除金属和玻璃,粗碎通过1.83mm的筛后得到的可燃固体废弃物 | 粉状RDF |
RDF-5 | 将生活垃圾中去除金属和玻璃等粉碎、干燥、加工成型后得到的可燃固体废弃物 | 成型RDF |
RDF-6 | 将生活垃圾加工成液体燃料 | 液体燃料 |
RDF-7 | 将生活垃圾加工成气体燃料 | 气体燃料 |
分类 | 内容 | 备注 |
---|---|---|
RDF-1 | 将生活垃圾中的大件垃圾除去得到的可燃固体废弃物 | 疏松RDF |
RDF-2 | 将生活垃圾中去除金属和玻璃,粗碎通过152mm的筛后得到的可燃固体废弃物 | 疏松RDF |
RDF-3 | 将生活垃圾中去除金属和玻璃,粗碎通过50mm的筛后得到的可燃固体废弃物 | 疏松RDF |
RDF-4 | 将生活垃圾中去除金属和玻璃,粗碎通过1.83mm的筛后得到的可燃固体废弃物 | 粉状RDF |
RDF-5 | 将生活垃圾中去除金属和玻璃等粉碎、干燥、加工成型后得到的可燃固体废弃物 | 成型RDF |
RDF-6 | 将生活垃圾加工成液体燃料 | 液体燃料 |
RDF-7 | 将生活垃圾加工成气体燃料 | 气体燃料 |
1 | 李延吉. 生活垃圾制备RDF及能源化利用研究[D]. 杭州: 浙江大学, 2018. |
LI Yanji. Study on refuse derived fuel product from waste and energy utilization[D]. Hangzhou: Zhejiang University, 2018. | |
2 | 解强, 武建军, 吴国光, 等. 垃圾衍生燃料制备与特性研究[J]. 哈尔滨工业大学学报, 2003, 35(11): 1328-1331. |
XIE Qiang, WU Jianjun, WU Guoguang, et al. Preparation and character of densified refuse-derived fuel for gasification[J]. Journal of Harbin Institute of Technology, 2003, 35(11): 1328-1331. | |
3 | 张宪生, 解强, 沈吉敏, 等. 新型垃圾衍生燃料制备的研究[J]. 苏州科技学院学报(工程技术版), 2003, 16(2): 24-28. |
ZHANG Xiansheng, XIE Qiang, SHEN Jimin, et al. Preparation and characterization of a new type refuse derived fuel[J]. Journal of University of Science and Technology of Suzhou (Engineering and Technology), 2003, 16(2): 24-28. | |
4 | 张宪生, 厉伟, 沈吉敏, 等. 混煤垃圾衍生燃料制备工艺的正交试验研究[J]. 江苏环境科技, 2003, 16(4): 1-3, 19. |
ZHANG Xiansheng, LI Wei, SHEN Jimin, et al. Orthogonal test study of preparation technology for a new refuse derived fuel (RDF)[J]. Jiang Su Environmental Science and Technology, 2003, 16(4): 1-3, 19. | |
5 | 王泽生, 叶会华, 刘志军, 等. 垃圾衍生燃料的制备工艺及关键技术[J]. 天津城市建设学院学报, 2008, 14(4): 290-294. |
WANG Zesheng, YE Huihua, LIU Zhijun, et al. Research on producting technics and key techniques of refuse derived fuel[J]. Journal of Tianjin Institute of Urban Construction, 2008, 14(4): 290-294. | |
6 | 孙明明. 高热值垃圾与生物质混合制取RDF及其燃烧特性研究[D]. 沈阳: 沈阳航空工业学院, 2009. |
SUN Mingming. Thermal analysis of refuse-derived fuel (RDF) made of residual waste and biomass[D]. Shenyang: Shenyang Aerospace University, 2009. | |
7 | 李延吉, 张伟, 宋政刚, 等. 高热值垃圾制备RDF成型特性及可行性[J]. 可再生能源, 2013, 31(7): 116-119, 128. |
LI Yanji, ZHANG Wei, SONG Zhenggang, et al. Forming characteristics of refuse derived fuel from high heating value waste and feasibility[J]. Renewable Energy Resources, 2013, 31(7): 116-119, 128. | |
8 | 赵学, 王里奥, 刘元元, 等. 生活垃圾制备衍生燃料(RDF-5)——以重庆市为例[J]. 环境科学学报, 2016, 36(7): 2557-2562. |
ZHAO Xue, WANG Liao, LIU Yuanyuan, et al. Municipal solid waste for refuse-derived fuel(RDF-5): a case study in Chongqing[J]. Acta Scientiae Circumstantiae, 2016, 36(7): 2557-2562. | |
9 | 齐琪, 袁京, 李赟, 等. 生活垃圾制备RDF工艺参数及其热特性研究[J]. 中国环境科学, 2017, 37(3): 1051-1057. |
QI Qi, YUAN Jing, LI Yun, et al. Processing parameters and thermal characteristics of RDF based on municipal solid waste[J]. China Environmental Science, 2017, 37(3): 1051-1057. | |
10 | KERDSUWAN Somrat, MEENAROCH Ubet, CHALERMCHAROENRAT Thitaaus. The novel design and manufacturing technology of densified rdf from reclaimed landfill without a mixing binding agent using a hydraulic hot pressing machine[C]//Matec Web of Conferences, 2016. |
11 | BIALOWIEC A, MICUDA M, KOZIEL J A. Waste to carbon: densification of torrefied refuse-derived fuel[J]. Energies, 2018, 11(11): doi: 10.3390/en11113233. |
12 | PUNIN Weera, MANEEWAN Somchai, PUNLEK Chantana. The feasibility of converting solid waste into refuse-derived fuel 5 via mechanical biological treatment process[J]. Journal of Material Cycles and Waste Management, 2014, 16(4): 753-762. |
13 | ZAMAN B, HARDYANTI N, SAMADIKUN B P, et al. Conversion of municipal solid waste to refuse-derived fuel using biodrying[C]//IOP Conference Series Earth and Environmental Science, 2021. |
14 | GRZESIK Katarzyna, MALINOWSKI Mateusz. Life cycle assessment of refuse-derived fuel production from mixed municipal waste[J]. Energy Sources, 2016, 38(21): 3150-3157. |
15 | JEWIARZ Marcin, MUDRYK Krzysztof, WROBEL Marek, et al. Parameters affecting rdf-based pellet quality[J]. Energies, 2020, 13(4): doi: 10.3390/en13040910. |
16 | 赵鹏. 可用于层燃炉的RDF固氯特性和燃烧性能的研究[D]. 南京: 南京林业大学, 2008. |
ZHAO Peng. Study on combustion and dechlorination characteristics of RDF which is suitable for grate-fired furnace[D]. Nanjing: Nanjing Forestry University, 2008. | |
17 | 闫晶晶. 城市生活垃圾衍生燃料燃烧特性研究[D]. 杭州: 浙江工业大学, 2010. |
YAN Jingjing. The combustion characteristics of municipal solid wastes derived fuel[D]. Hangzhou: Zhejiang University of Technology, 2010. | |
18 | 闫晶晶, 黄立维, 徐昕, 等. 城市生活垃圾衍生燃料热分解特性[J]. 浙江工业大学学报, 2011, 39(2): 136-139. |
YAN Jingjing, HUANG Liwei, XU Xin, et al. The properties of thermal decomposition of refuse derived fuel from municipal solid wastes[J]. Journal of Zhejiang University of Technology, 2011, 39(2): 136-139. | |
19 | 李延吉, 姜璐, 邹科威, 等. 垃圾衍生燃料流化床焚烧污染物排放特性[J]. 中南大学学报(自然科学版), 2015, 46(6): 2350-2358. |
LI Yanji, JIANG Lu, ZOU Kewei, et al. Experiment study on pollutant emission of RDF incineration in fluidized bed[J]. Journal of Central South University (Science and Technology), 2015, 46(6): 2350-2358. | |
20 | 宋政刚. 城市生活垃圾制备RDF富氧燃烧基础研究[D]. 沈阳: 沈阳航空航天大学, 2011. |
SONG Zhenggang. Basic research of combustion of rdf prepared by municipal solid waste under oxygen-enriched atmosphere[D]. Shenyang: Shenyang Aerospace University, 2011. | |
21 | KOBYASHI Nobusuke, ITAYA Yoshinori, PIAO Guilin, et al. The behavior of flue gas from RDF combustion in a fluidized bed[J]. Powder Technology, 2005, 151(1/2/3): 87-95. |
22 | 赵凯峰, 孙军, 赵鹏, 等. 垃圾衍生燃料炭化物燃烧特性分析[J]. 可再生能源, 2009, 27(4): 81-83, 87. |
ZHAO Kaifeng, SUN Jun, ZHAO Peng, et al. Analysis on the combustion characteristics of carbonized RDF[J]. Renewable Energy Resources, 2009, 27(4): 81-83, 87. | |
23 | AZAM M, JAHROMY S S, RAZA W, et al. Comparison of the combustion characteristics and kinetic study of coal, municipal solid waste, and refuse-derived fuel: model-fitting methods[J]. Energy Science&engineering, 2019, 7(6): 2646-2657. |
24 | AZAM M, ASHRAF A, JAHROMY S S, et al. Isoconversional Nonisothermal kinetic analysis of municipal solid waste, refuse-derived fuel, and coal[J]. Energy Science and Engineering, 2020, 8(10): 3728-3739. |
25 | COSTA Michela, MASSAROTTI Nicola, MAURO Alessandro, et al. CFD modelling of a RDF incineration plant[J]. Applied Thermal Engineering, 2016, 101: 710-719. |
26 | SEVER AKDAĞ A, ATıMTAY A, SANIN F D. Comparison of fuel value and combustion characteristics of two different RDF samples[J]. Waste Management (New York, N Y), 2016, 47(Pt B): 217-224. |
27 | LU J F, PILAWSKA M, ZHANG J S, et al. Combustion characteristics of refuse derived fuels in circulating fluidised bed combustor[J]. Journal of the Energy Institute, 2006, 79(3): 139-144. |
28 | 赵明举. 煤与垃圾衍生燃料(RDF)的流化床混烧研究及其酸性气体的脱除[D]. 太原: 太原理工大学, 2002. |
ZHAO Mingju. Studies on co-firing of coal and refuse derived fuel (RDF) in fluidized bed combustor and on the removal of acid gases[D]. Taiyuan: Taiyuan University of Technology, 2002. | |
29 | 赵宁. 垃圾衍生燃料热解特性实验研究[D]. 沈阳: 沈阳航空航天大学, 2012. |
ZHAO Ning. Experimental study on pyrolysis charateristics of refuse derived fuel[D]. Shenyang: Shenyang Aerospace University, 2012. | |
30 | ZAINI Ilman Nuran, WEN Yuming, MOUSA Elsayed, et al. Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis[J]. Fuel Processing Technology, 2021, 216: 106796. |
31 | GÓMEZ-MORENO F J, SANZ-RIVERA D, MARTı́N-ESPIGARES M, et al. Characterization of particulate emissions during pyrolysis and incineration of refuse derived fuel[J]. Journal of Aerosol Science, 2003, 34(9): 1267-1275. |
32 | BOSMANS Anouk, DE DOBBELAERE Christopher, HELSEN Lieve. Pyrolysis characteristics of excavated waste material processed into refuse derived fuel[J]. Fuel, 2014, 122: 198-205. |
33 | MANYÀ J J, GARCÍA-CEBALLOS F, AZUARA M, et al. Pyrolysis and char reactivity of a poor-quality refuse-derived fuel (RDF) from municipal solid waste[J]. Fuel Processing Technology, 2015, 140: 276-284. |
34 | RAJCA P, SKIBINSKI A. Theoretical analysis of the thermal conversion of rdf fuel in the context of waste management[C]//Journal of Physics Conference Series, 2019. |
35 | SIERADZKA Małgorzata, RAJCA Przemysław, ZAJEMSKA Monika, et al. Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software - ansys chemkin-pro[J]. Journal of Cleaner Production, 2020, 248: 119277. |
36 | RAJCA Przemysław, POSKART Anna, CHRUBASIK Maciej, et al. Technological and economic aspect of refuse derived fuel pyrolysis[J]. Renewable Energy, 2020, 161: 482-494. |
37 | YOUNAN Y, VAN GOETHEM M W, STEFANIDIS G D. A particle scale model for municipal solid waste and refuse-derived fuels pyrolysis[J]. Computers & Chemical Engineering, 2016, 86: 148-159. |
38 | ZHOU Chunguang, YANG Weihong. Effect of heat transfer model on the prediction of refuse-derived fuel pyrolysis process[J]. Fuel, 2015, 142: 46-57. |
39 | YANG Pu, JIA Dening, LIN Bingcheng, et al. Microwave-assisted catalytic pyrolysis of refuse-derived fuel (RDF) to improve pyrolysis performance and biochar properties[J]. Fuel Processing Technology, 2022, 227: 107129. |
40 | MATERAZZI Massimiliano, LETTIERI Paola, MAZZEI Luca, et al. Fate and behavior of inorganic constituents of rdf in a two stage fluid bed-plasma gasification plant[J]. Fuel, 2015, 150: 473-485. |
41 | ZHOU Xianchao, LIU Wei, ZHANG Peng, et al. Study on heavy metals conversion characteristics during refused derived fuel gasification process[J]. Procedia Environmental Sciences, 2016, 31: 514-519. |
42 | YILDIRIR E, ONWUDILI J A, WILLIAMS P T. Catalytic supercritical water gasification of refuse derived fuel for high energy content fuel gas[J]. Waste and Biomass Valorization, 2017, 8(2): 359-367. |
43 | DALAI A K, BATTA N, ESWARAMOORTHI I, et al. Gasification of refuse derived fuel in a fixed bed reactor for syngas production[J]. Waste Management, 2009, 29(1): 252-258. |
44 | GALVAGNO S, CASCIARO G, CASU S, et al. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis[J]. Waste Management, 2009, 29(2): 678-689. |
45 | KUNGKAJIT Chatchai, PRATEEPCHAIKUL Gumpon, KAOSOL Thaniya. Influence of plastic waste for refuse-derived fuel on downdraft gasification[J]. Energy Procedia, 2015, 79: 528-535. |
46 | QIRANG F, HUANGYA J, MIAOMIAO N, et al. Experimental study on refuse derived fuel gasification with oxygen-rich air in fluidized bed gasifier[J]. Journal of Zhejiang University(Engineering Science), 2014, 48(7): 1265-1271. |
47 | CHIEMCHAISRI Chart, CHARNNOK Boonya, VISVANATHAN Chettiyappan. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system[J]. Bioresource Technology, 2010, 101(5): 1522-1527. |
48 | 张云贺. 垃圾衍生燃料的热解耦合化学链气化研究[D]. 杭州: 浙江大学, 2021. |
ZHANG Yunhe. Study on chemical chain gasification of waste-derived fuel[D]. Hangzhou: Zhejiang University, 2021. | |
49 | ALURI S, SYED A, FLICK D W., et al. Pyrolysis and gasification studies of model refuse derived fuel (RDF) using thermogravimetric analysis[J]. Fuel Processing Technology, 2018, 179: 154-166. |
50 | BORGOGNA A, SALLADINI A, SPADACINI L, et al. Methanol production from refuse derived fuel: Influence of feedstock composition on process yield through gasification analysis[J]. Journal of Cleaner Production, 2019, 235: 1080-1089. |
51 | TOSTI S, SOUSA M A, BUCETI G, et al. Process analysis of refuse derived fuel hydrogasification for producing SNG[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21470-21480. |
52 | CAPUTO AC, PALUMBO M, SCACCHIA F. Perspectives of RDF use in decentralized areas: Comparing power and co-generation solutions[J]. Fuel&Energy Abstracts, 2004, 24(14): 2171-2187. |
53 | SRISAENG N, TIPPAYAWONG N, TIPPAYAWONG K Y. Energetic and economic feasibility of RDF to energy plant for a local Thai municipality[C]//Energy Procedia, 2017: 115-120. |
54 | SUNUNTA N, SEDPHO S, GHEEWALA S H, et al. Life cycle greenhouse gas evaluation of organic rankine cycle using refuse-derived fuel from municipal solid waste[J]. Journal of Renewable and Sustainable Energy, 2017, 9(5): doi: 10.106311.5006209. |
55 | SAKRI Asma, AOUABED Ali, NASSOUR Abdallah, et al. Refuse-derived fuel potential production for co-combustion in the cement industry in algeria[J]. Waste Management & Research, 2021, 39(9): 1174-1184. |
56 | HEMIDAT Safwat, SAIDAN Motasem, Salam AL-ZU'BI, et al. Potential utilization of RDF as an alternative fuel to be used in cement industry in jordan[J]. Sustainability, 2019, 11(20): doi: 10.3390/su11205819. |
57 | 王静毅. 城市生活垃圾衍生燃料在燃煤电厂中的应用[J]. 应用能源技术, 2021(3): 13-15. |
WANG Jingyi. Application of MSW derivative fuel in coal-fired power plants[J]. Application of Energy Technology, 2021(3): 13-15. | |
58 | 周显超, 张璐, 吴畏. 生活垃圾衍生燃料催化气化制备合成气[J]. 环境工程学报, 2016, 10(10): 5914-5918. |
ZHOU Xianchao, ZHANG Lu, WU Wei. Synthesis gas generation from refuse derived fuel via catalytic gasification[J]. Journal of Environmental Engineering, 2016, 10(10): 5914-5918. |
[1] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[2] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[3] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[4] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[5] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[6] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[7] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[10] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[11] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[12] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[15] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |