Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 75-80.DOI: 10.16085/j.issn.1000-6613.2021-0560
• Energy processes and technology • Previous Articles Next Articles
ZHAO Huaqiang1,2(), PENG Bo1,2()
Received:
2021-03-22
Revised:
2021-04-07
Online:
2021-11-12
Published:
2021-11-12
Contact:
PENG Bo
通讯作者:
彭勃
作者简介:
赵华强(1998—),男,硕士研究生,研究方向为温室气体封存与石油开采利用。E-mail: 基金资助:
CLC Number:
ZHAO Huaqiang, PENG Bo. Research progress of polymer microspheres in deep oil field control and displacement technology[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 75-80.
赵华强, 彭勃. 聚合物微球在油田深部调驱技术中的研究进展[J]. 化工进展, 2021, 40(S2): 75-80.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0560
聚合方法 | 具体步骤 | 粒径/μm | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|
分散聚合 | 溶解在有机溶剂/水的单体,在稳定剂存在下聚合成不溶性聚合物而分散在连续相中 | 0.5~10 | 表观黏度低、溶解速度快、介质 蒸发热低、生产工艺简单 | 成核期敏感,合成特殊 功能性的微球难度大 | [ |
反相乳液 | 将水溶性单体加入到油相中,加入特定 乳化剂并进行机械搅拌形成油包水乳状液 | 0.1~1000 | 分子量可控、颗粒分布均匀、可 快速聚合, 耐盐性好、吸水倍率高 | 乳化剂难以去除、成本 高、聚合稳定性差 | [ |
反相微乳液 | 油包水型微乳液聚合,主要是水溶性 单体聚合 | 0.05~10 | 黏度低、透光率高、聚合速率快、粒径分布窄、热力学稳定性好 | 单体含量低、成本高、 反应条件苛刻 | [ |
反相悬浮 | 将水相悬浮在油相中并在引发剂的作用下发生聚合反应 | 10~1000 | 耐高温、吸水吸盐性能优良、 抗压 | 产品纯度不高,粒径分 布较宽、工艺比较复杂 | [ |
无皂乳液 | 在乳液聚合反应过程中完全不含乳化剂或仅含有微量乳化剂的乳液聚合 | 0.1~10 | 工艺简便,聚合速度快 | 粒径分布较窄,稳定性 差、固含量低 | [ |
聚合方法 | 具体步骤 | 粒径/μm | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|
分散聚合 | 溶解在有机溶剂/水的单体,在稳定剂存在下聚合成不溶性聚合物而分散在连续相中 | 0.5~10 | 表观黏度低、溶解速度快、介质 蒸发热低、生产工艺简单 | 成核期敏感,合成特殊 功能性的微球难度大 | [ |
反相乳液 | 将水溶性单体加入到油相中,加入特定 乳化剂并进行机械搅拌形成油包水乳状液 | 0.1~1000 | 分子量可控、颗粒分布均匀、可 快速聚合, 耐盐性好、吸水倍率高 | 乳化剂难以去除、成本 高、聚合稳定性差 | [ |
反相微乳液 | 油包水型微乳液聚合,主要是水溶性 单体聚合 | 0.05~10 | 黏度低、透光率高、聚合速率快、粒径分布窄、热力学稳定性好 | 单体含量低、成本高、 反应条件苛刻 | [ |
反相悬浮 | 将水相悬浮在油相中并在引发剂的作用下发生聚合反应 | 10~1000 | 耐高温、吸水吸盐性能优良、 抗压 | 产品纯度不高,粒径分 布较宽、工艺比较复杂 | [ |
无皂乳液 | 在乳液聚合反应过程中完全不含乳化剂或仅含有微量乳化剂的乳液聚合 | 0.1~10 | 工艺简便,聚合速度快 | 粒径分布较窄,稳定性 差、固含量低 | [ |
年份 | 研究者 | 制备方法 | 形态尺寸 | 性能评价 | 文献 |
---|---|---|---|---|---|
2012 | Yao等 | AM、MBA为单体,Span-80为油相,Tween-80为分散稳定剂,APS为引发剂利用反相悬浮液聚合制备弹性微球 | 呈球形,粒径在4.27~39.9μm | 该微球具有良好的膨胀性能,耐温耐盐,变形后易恢复,对渗透率具有明显的选择性,具有堵水不堵油的良好驱油性能 | [ |
2014 | 林莉莉等 | AM、AMPS、SAA为单体,聚乙烯吡咯烷酮作为稳定剂,采用分散聚合发在盐水溶液中合成交联聚合物微球 | 形状规则,粒径为1~3μm | 室内封堵实验表明,该微球在中高温条件下具有一定封堵性、变形性和逐步深部调驱性能 | [ |
2014 | Hua等 | AM、AA为单体,APS为引发剂,通 过反相微乳液聚合制备交联聚合物微球 | 粒径在30~60nm左右,呈球形,分散在水中溶胀3~6倍仍呈球形 | 100~900mg/L的微球分散体系在一定剪切速率范围内表现出剪切增稠的行为,增加了驱替液的流动阻力。该体系能对核孔膜具有很好的封堵作用,同时还可以堵塞填砂管高渗层,将原油低渗层驱出 | [ |
2016 | 姜志高等 | AM、AMPS、DAC为单体采用反相悬浮液聚合法制备交联聚合物微球 | 在模拟水中溶胀10天后,粒径在27~37μm左右 | 注入微球后,填砂管前端压力增大,中后端压力也有不同程度上升,表明该微球具有良好的封堵性能。并联岩心驱油实验表明微球与聚合物的复配体系提高采收率的效果高于单纯的聚合物驱体 | [ |
2016 | Maury等 | 采用自由基聚合将HPAM接枝到纳米二氧化硅表面合成一种水溶性纳米微球 | 呈球形,接枝后粒径约为2400nm | 高温下流变测量,稳定性显著提高,表面亲水导致油水界面张力降低,CMG模拟实验表明接枝聚合物后采收率提高21% | [ |
2017 | 邓凯迪等 | MBA为交联剂,N-羟基丙烯酰胺、AM为单体,在APS引发下进行反相微乳液聚合制备了P(AM/N-MAM)微球 | 单分散球形,粒径分布均一, 约为100nm | 岩心驱替实验表明,微球体系在中低渗层岩心具有较好的注入性,注入后岩心压力显著升高,可以实现对中低渗层深部调堵 | [ |
2019 | 冯全宏等 | 以AM为单体,APS为引发剂通过反相乳液聚合法制备聚丙烯酰胺微球WQ-3 | 颗粒呈球形,平均粒径为404.92nm | 吸水膨胀后表现明显的黏弹性,在高剪切速率下具有较好的耐剪切能力,注入非均质岩心后压力增大,明显提高了采收率 | [ |
2020 | Du等 | DMAEMA作为交联剂,水分散聚合 法制备响应性聚合物微球(c-PMAD) | 微球表面均匀呈球形,初始粒径为3.5μm,溶胀后粒径为5.21μm | 微球具有极高的稳定性能,在66.5℃微球具有UCST行为 | [ |
2020 | 刘垚等 | AM、AMPS为单体,MBA为交联剂通过反相乳液聚合法制备聚丙烯酰胺微球 | 高分散度光滑微球,平均粒径278nm | 高温条件高矿化度下稳定性好,黏弹性较高 | [ |
年份 | 研究者 | 制备方法 | 形态尺寸 | 性能评价 | 文献 |
---|---|---|---|---|---|
2012 | Yao等 | AM、MBA为单体,Span-80为油相,Tween-80为分散稳定剂,APS为引发剂利用反相悬浮液聚合制备弹性微球 | 呈球形,粒径在4.27~39.9μm | 该微球具有良好的膨胀性能,耐温耐盐,变形后易恢复,对渗透率具有明显的选择性,具有堵水不堵油的良好驱油性能 | [ |
2014 | 林莉莉等 | AM、AMPS、SAA为单体,聚乙烯吡咯烷酮作为稳定剂,采用分散聚合发在盐水溶液中合成交联聚合物微球 | 形状规则,粒径为1~3μm | 室内封堵实验表明,该微球在中高温条件下具有一定封堵性、变形性和逐步深部调驱性能 | [ |
2014 | Hua等 | AM、AA为单体,APS为引发剂,通 过反相微乳液聚合制备交联聚合物微球 | 粒径在30~60nm左右,呈球形,分散在水中溶胀3~6倍仍呈球形 | 100~900mg/L的微球分散体系在一定剪切速率范围内表现出剪切增稠的行为,增加了驱替液的流动阻力。该体系能对核孔膜具有很好的封堵作用,同时还可以堵塞填砂管高渗层,将原油低渗层驱出 | [ |
2016 | 姜志高等 | AM、AMPS、DAC为单体采用反相悬浮液聚合法制备交联聚合物微球 | 在模拟水中溶胀10天后,粒径在27~37μm左右 | 注入微球后,填砂管前端压力增大,中后端压力也有不同程度上升,表明该微球具有良好的封堵性能。并联岩心驱油实验表明微球与聚合物的复配体系提高采收率的效果高于单纯的聚合物驱体 | [ |
2016 | Maury等 | 采用自由基聚合将HPAM接枝到纳米二氧化硅表面合成一种水溶性纳米微球 | 呈球形,接枝后粒径约为2400nm | 高温下流变测量,稳定性显著提高,表面亲水导致油水界面张力降低,CMG模拟实验表明接枝聚合物后采收率提高21% | [ |
2017 | 邓凯迪等 | MBA为交联剂,N-羟基丙烯酰胺、AM为单体,在APS引发下进行反相微乳液聚合制备了P(AM/N-MAM)微球 | 单分散球形,粒径分布均一, 约为100nm | 岩心驱替实验表明,微球体系在中低渗层岩心具有较好的注入性,注入后岩心压力显著升高,可以实现对中低渗层深部调堵 | [ |
2019 | 冯全宏等 | 以AM为单体,APS为引发剂通过反相乳液聚合法制备聚丙烯酰胺微球WQ-3 | 颗粒呈球形,平均粒径为404.92nm | 吸水膨胀后表现明显的黏弹性,在高剪切速率下具有较好的耐剪切能力,注入非均质岩心后压力增大,明显提高了采收率 | [ |
2020 | Du等 | DMAEMA作为交联剂,水分散聚合 法制备响应性聚合物微球(c-PMAD) | 微球表面均匀呈球形,初始粒径为3.5μm,溶胀后粒径为5.21μm | 微球具有极高的稳定性能,在66.5℃微球具有UCST行为 | [ |
2020 | 刘垚等 | AM、AMPS为单体,MBA为交联剂通过反相乳液聚合法制备聚丙烯酰胺微球 | 高分散度光滑微球,平均粒径278nm | 高温条件高矿化度下稳定性好,黏弹性较高 | [ |
1 | 李翔, 瞿瑾, 鞠野, 等. 深部调驱用纳米聚合物微球的研究进展[J]. 化学工业与工程, 2021, 38(2): 48-54. |
LI Xiang, QU Jin, JU Ye, et al. Research progress of nano-polymer microspheres for deep control and displacement[J]. Chemical Industry and Engineering, 2021, 38(2): 48-54. | |
2 | 赵梦云, 张锁兵, 欧阳坚, 等. 国内深部调驱技术研究进展[J]. 内蒙古石油化工, 2010, 36(6): 73-75. |
ZHAO Mengyun, ZHANG Suobing, OUYANG Jian, et al. Research progress of deep control and flooding technology in China[J]. Inner Mongolia Petrochemical Industry, 2010, 36(6):73-75. | |
3 | 李宜坤, 李宇乡, 彭杨, 等. 中国堵水调剖60年[J]. 石油钻采工艺, 2019, 41(6): 773-787. |
LI Yikun, LI Yuxiang, PENG Yang, et al. Water plugging and profile control for 60 years in China[J]. Oil Drilling & Production Technology, 2019, 41(6): 773-787. | |
4 | 邹皓. 深部调剖用延迟交联体系研究[J]. 石油化工腐蚀与防护, 2005, 28(6): 10-12. |
ZOU Hao. Study on delayed crosslinking system for deep profile control[J]. Corrosion and Protection in Petrochemical Industry, 2005, 28(6): 10-12. | |
5 | 鲁娇, 彭勃, 李明远, 等. 三种低黏度交联聚合物调驱剂研究进展[J]. 油田化学, 2010, 27(1): 106-111. |
LU Jiao, PENG Bo, LI Mingyuan, et al. Research progress of three kinds of low viscosity crosslinked polymer control and flooding agents[J]. Oilfield Chemistry, 2010, 27(1): 106-111. | |
6 | 张桂意, 王桂勋, 李克新. 水膨体调剖有效期影响因素分析及对策[J]. 特种油气藏, 2004, 11(2): 72-74. |
ZHANG Guiyi, WANG Guixun, LI Kexin. Analysis of influencing factors and countermeasures for the validity period of water swelling profile control[J]. Special Oil and Gas Reservoirs, 2004, 11(2): 72-74. | |
7 | 刘一江, 刘积松, 李琇富. 预交联凝胶微粒在深度调剖中的应用[J]. 油气地质与采收率, 2001, 8(3): 65-66. |
LIU Yijiang, LIU Jisong, LI Xiufu. Application of pre-crosslinked gel particle in deep profile control[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(3): 65-66. | |
8 | 殷艳玲, 张贵才. 化学堵水调剖剂综述[J]. 油气地质与采收率, 2003, 10(6): 64-66. |
YIN Yanling, ZHANG Guicai. Summary of chemical water shutoff and profile control agents[J]. Oil & Gas Recovery Technology, 2003, 10(6): 64-66. | |
9 | 路建萍, 沈燕宾, 王佳, 等. 纳米微球技术在油田领域的研究进展及应用[J]. 应用化工, 2020, 49(3): 768-772. |
LU Jianping, SHEN Yanbin, WANG Jia, et al. Research progress and application of nano-sphere technology in oilfield[J]. Applied Chemical Industry, 2020, 49(3): 768-772. | |
10 | 孙焕泉, 王涛, 肖建洪, 等. 新型聚合物微球逐级深部调剖技术[J]. 油气地质与采收率, 2006, 13(4): 77-79. |
SUN Huanquan, WANG Tao, XIAO Jianhong, et al. New polymer microspheres stepwise feep profile control technology[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(4): 77-79. | |
11 | 王代流, 肖建洪. 交联聚合物微球深部调驱技术及其应用[J]. 油气地质与采收率, 2008, 15(2): 86-88. |
WANG Dailiu, XIAO Jianhong. Deep control and flooding technology of crosslinked polymer microspheres and its application[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(2): 86-88. | |
12 | 邱磊, 苏向东, 韩峰. 分散聚合制备单分散聚合微球[J]. 化学工程与装备, 2010(12): 13-15. |
QIU Lei, SU Xiangdong, HAN Feng. Preparation of monodisperse polymerization microspheres by dispersion polymerization[J]. Chemical Engineering and Equipment, 2010(12): 13-15. | |
13 | 喻琴, 蒋鑫浩. 聚丙烯酰胺微球在油田调剖堵水中的应用研究进展[J]. 精细石油化工进展, 2011, 12(7): 13-16. |
YU Qin, JIANG Xinhao. Research progress in the application of polyacrylamide microspheres in profile control and water plugging in oil fields[J]. Advances in Fine Petrochemicals, 2011, 12(7): 13-16. | |
14 | 党高飞, 付志峰. 分散聚合技术及其研究进展[J]. 高分子通报, 2008(10): 41-46. |
DANG Gaofei, FU Zhifeng. Dispersion polymerization technology and its research progress[J]. Chinese Polymer Bulletin, 2008(10): 41-46. | |
15 | 林莉莉, 郑晓宇, 刘可成, 等. 分散聚合法制备深部调剖用交联聚合物微球[J]. 油田化学, 2014, 31(3): 361-365. |
LIN Lili, ZHENG Xiaoyu, LIU Kecheng, et al. Preparation of crosslinked polymer microspheres for deep profile control by dispersion polymerization[J]. Oilfield Chemistry, 2014, 31(3): 361-365. | |
16 | DU W H, WU P W,ZHAO Z X, et al. Facile preparation and characterization of temperature-responsive hydrophilic crosslinked polymer microspheres by aqueous dispersion polymerization[J]. European Polymer Journal, 2020, 128:109610. |
17 | WANG X Y, WANG X Y, LIU L, et al. Preparation and characterization of carbon aerogel microspheres by an inverse emulsion polymerization[J]. Journal of Non-Crystalline Solids, 2011, 357(3): 793-797. |
18 | 刘垚, 马建中, 杨海恩, 等. 反相乳液法制备聚丙烯酰胺微球及其性能研究[J]. 日用化学工业, 2020, 50(4): 238-243. |
LIU Yao, MA Jianzhong, YANG Hai’en, et al. Preparation of polyacrylamide microspheres by inverse emulsion method and its properties[J]. China Surfactant Detergent & Cosmetics, 2020, 50(4):238-243. | |
19 | 邓凯迪, 李谦定. 提高采收率用聚(N-羟甲基丙烯酰胺-丙烯酰胺)微球的反相微乳液聚合及其性能[J]. 材料科学与工程学报, 2017, 35(3): 468-474. |
DENG Kaidi, LI Qianding. Reverse phase microemulsion polymerization of poly(N-methylol acrylamide) microspheres for enhanced oil recovery[J]. Journal of Materials Science and Engineering, 2017, 35(3): 468-474. | |
20 | 杜荣荣, 刘祥. 反相微乳液聚合制备丙烯酰胺类聚合物微球的研究进展[J]. 化工进展, 2015, 34(8): 3065-3074. |
DU Rongrong, LIU Xiang. Research progress in the preparation of acrylamide polymer microspheres by reverse microemulsion polymerization[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3065-3074. | |
21 | WEI H, YINGHUA S, HUIMIN L, et al. Mechanical properties of pH-responsive poly(2-hydroxyethyl methacrylate/methacrylic acid) microgels prepared by inverse microemulsion polymerization[J]. Reactive and Functional Polymers, 2014, 74: 101-106. |
22 | 姜志高, 郑晓宇, 郭文峰, 等. 反相悬浮聚合法制备交联聚合物微球改善聚合物驱的效果[J]. 油田化学, 2016, 33(4): 687-691. |
JIANG Zhigao, ZHENG Xiaoyu, GUO Wenfeng, et al. Preparation of crosslinked polymer microspheres by reverse suspension polymerization to improve the effect of polymer flooding[J]. Oilfield Chemistry, 2016, 33(4): 687-691. | |
23 | 毕淑娴, 雷忠利. 聚丙烯酰胺反相悬浮聚合的研究[J]. 陕西师范大学学报(自然科学版), 2006, 34(1): 63-66. |
BI Shuxian, LEI Zhongli. Study on reverse suspension polymerization of polyacrylamide[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2006, 34(1): 63-66. | |
24 | SONG X, HU J, WANG C. Synthesis of highly surface functionalized monodispersed poly(St/DVB/GMA) nanospheres with soap-free emulsion polymerization followed by facile “click chemistry” with functionalized alkylthiols[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1/2/3): 250-256. |
25 | YAN R, ZHANG Y, WANG X, et al. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores[J]. Journal of Colloid and Interface Science, 2012, 368(1): 220-225. |
26 | YANG Y, WEN J, WEI J, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination[J]. ACS Applied Materials & Interfaces, 2013, 5(13):6201-6207. |
27 | ZHANG S, JIANG Y, CHEN C, et al. Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances[J]. Environmental Science & Technology, 2012, 46(16): 8764-8772. |
28 | 张雷, 马波, 郑力军, 等. 耐温抗盐型水分散相纳米调驱剂的制备及其性能[J]. 陕西科技大学学报, 2020, 38(3): 60-64. |
ZHANG Lei, MA Bo, ZHENG Lijun, et al. Preparation and performance of nano-sized temperature-salt-resistant water dispersive phase control and flooding agent[J]. Journal of Shaanxi University of Science and Technology, 2020, 38(03): 60-64. | |
29 | 韩秀贞, 李明远, 林梅钦. 交联聚合物微球分散体系的性能评价[J]. 油气地质与采收率, 2009, 16(5): 63-65. |
HAN Xiuzhen, LI Mingyuan, LIN Meiqin. Performance evaluation of cross-linked polymer microsphere dispersion system[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(5): 63-65. | |
30 | 林梅钦, 郭金茹, 徐凤强, 等. 微米级交联聚丙烯酰胺微球分散体系的封堵特性[J]. 石油化工, 2014, 43(1): 91-96. |
LIN Meiqin, GUO Jinru, XU Fengqiang, et al. Blocking characteristics of micron-scale cross-linked polyacrylamide microsphere dispersion system[J]. Petrochemical Technology, 2014, 43(1): 91-96. | |
31 | 林梅钦, 韩飞雪, 李明远, 等. 核微孔滤膜评价交联聚合物溶液封堵性质的研究[J]. 膜科学与技术, 2003, 23(2): 11-14. |
LIN Meiqin, HAN Feixue, LI Mingyuan, et al. Study on evaluation of blocking properties of cross-linked polymer solution by nuclear microporous filter membrane[J]. Membrane Science and Technology, 2003, 23(2): 11-14. | |
32 | 雷光伦, 郑家朋. 孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究[J]. 中国石油大学学报(自然科学版), 2007, 31(1): 87-90. |
LEI Guanglun, ZHENG Jiapeng. Study on synthesis of pore-throat scale polymer microspheres and new technology of whole-process profile control and oil displacement[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(1): 87-90. | |
33 | YAO C, LEI G, LI L, et al. Selectivity of pore-scale elastic microspheres as a novel profile control and oil displacement agent[J]. Energy & Fuels, 2012, 26(8): 5092-5101. |
34 | HUA Z, LIN M Q, GUO J R, et al. Study on plugging performance of cross-linked polymer microspheres with reservoir pores[J]. Journal of Petroleum Science and Engineering, 2013, 105: 70-75. |
35 | MAURYA N K, KUSHWAHA P, MANDAL A. Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70: 319-330. |
36 | 冯全宏, 屈策计, 张伟, 等. 一种聚合物纳米微球调驱剂的制备及性能评价[J]. 辽宁石油化工大学学报, 2019, 39(4): 24-27. |
FENG Quanhong, QU Ceji, ZHANG Wei, et al. Preparation and performance evaluation of a polymer nanospheres control and flooding agent[J]. Journal of Liaoning Shihua University, 2019, 39(4): 24-27. | |
37 | TANG X, KANG W, ZHOU B, et al. Characteristics of composite microspheres for in-depth profile control in oilfields and the effects of polymerizable silica nanoparticles[J]. Powder Technology, 2020, 359: 205-215. |
[1] | YU Yang, HE Yanping, LUO Shiyu, HAN Wanqing, LI Guiying, SI Tian, ZHU Linhua, ZHU Yuanzhi. Effect of the solvent systems on preparation of polystyrene microspheres via foam-transfer [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 320-326. |
[2] | BIAN Feng, YU Caili, ZHANG Shufen, CHEN Yong, XU Jianben, ZHANG Faai. Preparation and adsorption performance of rosin-based amination polymer microspheres [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1105-1110. |
[3] | XU Jianben, YU Caili, BIAN Feng, TAN Jieshuang, ZHANG Faai. Preparation,characterization and adsorption performance of rosin based polymer microspheres with hydroxyl groups [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2249-2254. |
[4] | LI Zhongjin,YANG Wei,LIU Yan,HAN Chunpeng,ZHAO Yan. Adsorption kinetics and thermodynamics of β-cyclodextrin polymer microspheres for p-nitrophenol [J]. Chemical Industry and Engineering Progree, 2010, 29(11): 2134-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |