Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 64-74.DOI: 10.16085/j.issn.1000-6613.2021-0494
• Energy processes and technology • Previous Articles Next Articles
WEN Peng(), LIANG Yuxiang(), HE Jingjian, ZHAO Mengya
Received:
2021-03-11
Revised:
2021-04-02
Online:
2021-11-12
Published:
2021-11-12
Contact:
LIANG Yuxiang
通讯作者:
梁宇翔
作者简介:
温鹏(1996—),男,硕士研究生,研究方向为润滑油添加剂的开发和生物质能源与化学转化。E-mail:基金资助:
CLC Number:
WEN Peng, LIANG Yuxiang, HE Jingjian, ZHAO Mengya. Research progress of ethenolysis in synthesis of olefin chemicals from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 64-74.
温鹏, 梁宇翔, 贺景坚, 赵梦亚. 乙烯复分解反应在生物质合成烯烃化学品中的研究进展[J]. 化工进展, 2021, 40(S2): 64-74.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0494
1 | BIDANGE J, FISCHMEISTER C, BRUNEAU C. Ethenolysis: a green catalytic tool to cleave carbon-carbon double bonds[J]. Chemistry—A European Journal, 2016, 22(35): 12226-12244. |
2 | LOZANO F J, LOZANO R, FREIRE P, et al. New perspectives for green and sustainable chemistry and engineering: approaches from sustainable resource and energy use, management, and transformation[J]. Journal of Cleaner Production, 2018, 172: 227-232. |
3 | SPEKREIJSE J, SANDERS J P M, BITTER J H, et al. The future of ethenolysis in biobased chemistry[J]. ChemSusChem, 2017, 10(3): 470-482. |
4 | HIGMAN C S, LUMMISS J A M, FOGG D E. Olefin metathesis at the dawn of implementation in pharmaceutical and specialty-chemicals manufacturing[J]. Angewandte Chemie International Edition, 2016, 55(11): 3552-3565. |
5 | JEON J Y, HAN Y, KIM Y W, et al. Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio-oil refinery[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(3): 690-722. |
6 | CHATTERJEE A, HOPEN ELIASSON S H, JENSEN V R. Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives[J]. Catalysis Science & Technology, 2018, 8(6): 1487-1499. |
7 | NICKEL A, PEDERSON R L. Commercial potential of olefin metathesis of renewable feedstocks[M]//GRELA K. Olefin Metathesis, New York: John Viley&Sons. Inc., 2014, 335-348. |
8 | GRUBBS R H. Olefin-metathesis catalysts for the preparation of molecules and materials(Nobel Lecture)[J]. Angewandte Chemie International Edition, 2006, 45(23): 3760-3765. |
9 | JEAN-LOUIS HÉRISSON P, CHAUVIN Y. Catalyse de transformation des oléfines par les complexes du tungstène. Ⅱ. Télomérisation des oléfines cycliques en présence d'oléfines acycliques[J]. Die Makromolekulare Chemie, 1971, 141(1): 161-176. |
10 | 王溯, 张友璐, 巴妍妍, 等. 立体选择性烯烃复分解反应的研究及应用[J]. 有机化学, 2020, 40(9): 2725-2741. |
WANG S, ZHANG Y L, BA Y Y, et al. Study and applications of stereoselective olefin metathesis reactions[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2725-2741. | |
11 | BRADSHAW C P C, HOWMAN E J, TURNER L. Olefin dismutation: reactions of olefins on cobalt oxide-molybdenum oxide-alumina[J]. Journal of Catalysis, 1967, 7(3): 269-276. |
12 | ZUECH E A, HUGHES W B, KUBICEK D H, et al. Homogeneous catalysts for olefin disproportionations from nitrosyl molybdenum and tungsten compounds[J]. Journal of the American Chemical Society, 1970, 92(3): 528-531. |
13 | HIETALA J, ROOT A, KNUUTTILA P. The surface acidity of pure and modified aluminas in Re/Al2O3 metathesis catalysts as studied by 1H MAS NMR spectroscopy and its importance in the ethenolysis of 1,5-cyclooctadiene[J]. Journal of Catalysis, 1994, 150(1): 46-55. |
14 | SCHWAB P, FRANCE M B, ZILLER J W, et al. A series of well-defined metathesis catalysts-synthesis of [RuCl2(CHR´)(PR3)2] and its reactions[J]. Angewandte Chemie International Edition, 1995, 34(18): 2039-2041. |
15 | SCHWAB P, GRUBBS R H, ZILLER J W. Synthesis and applications of RuCl2(CHR´)(PR3)2: the influence of the alkylidene moiety on metathesis activity[J]. Journal of the American Chemical Society, 1996, 118(1): 100-110. |
16 | VOUGIOUKALAKIS G C, GRUBBS R H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chemical Reviews, 2010, 110(3): 1746-1787. |
17 | SCHOLL M, DING S, LEE C W, et al. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands[J]. Organic Letters, 1999, 1(6): 953-956. |
18 | LOVE J A, MORGAN J P, TRNKA T M, et al. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile[J]. Angewandte Chemie International Edition, 2002, 41(21): 4035-4037. |
19 | CHOI T L, GRUBBS R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J]. Angewandte Chemie International Edition, 2003, 42(15): 1743-1746. |
20 | HARRITY J P A, LA D S, CEFALO D R, et al. Chromenes through metal-catalyzed reactions of styrenyl ethers. mechanism and utility in synthesis[J]. Journal of the American Chemical Society, 1998, 120(10): 2343-2351. |
21 | GARBER S B, KINGSBURY J S, GRAY B L, et al. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts[J]. Journal of the American Chemical Society, 2000, 122(34): 8168-8179. |
22 | CHIKKALI S, MECKING S. Refining of plant oils to chemicals by olefin metathesis[J]. Angewandte Chemie International Edition, 2012, 51(24): 5802-5808. |
23 | MGAYA J, SHOMBE G B, MASIKANE S C, et al. Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels[J]. Green Chemistry, 2019, 21(6): 1186-201. |
24 | BELGACEM M N, Monomers GANDINI A.,polymers and composites from renewable resources[M]. Amsterdam: Elsevier, 2008: 41-49. |
25 | 王海京, 杜泽学, 高国强. 植物油近/超临界醇解制备生物柴油[J]. 化工进展, 2017, 36(6): 2131-2136. |
WANG H J, DU Z X, GAO G Q. Preparation of biodiesel from vegetable oil by sub/supercritical alcoholysis[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2131-2136. | |
26 | 许伟, 葛小东, 金丽珠, 等. 蓖麻油基下游产物及蓖麻油增塑剂的研究及其应用进展[J]. 化工进展, 2015, 34(7): 1983-1988. |
XU W, GE X D, JIN L H, et al. Research and application progress of castor oil-based downstream products and its plasticizer[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1983-1988. | |
27 | 孔凡志, 蒋景阳, 金子林. 油脂的氢甲酰化及其工业开发前景[J]. 化工进展, 2001, 20(12): 39-42. |
KONG F Z, JIANG J Y, JIN Z L. Review on hydroformylation of unsaturated fat chemicals and its industrial application[J]. Chemical Industry and Engineering Progress, 2001, 20(12): 39-42. | |
28 | WARWEL S, BRÜSE F, DEMES C, et al. Polymers and surfactants on the basis of renewable resources[J]. Chemosphere, 2001, 43(1): 39-48. |
29 | YELCHURI V, SRIKANTH K, PRASAD R B N, et al. Olefin metathesis of fatty acids and vegetable oils[J]. Journal of Chemical Sciences, 2019, 131(5): 38-54. |
30 | WANG M, CHEN M, FANG Y, et al. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating[J]. Biotechnology for Biofuels, 2018, 11(1): 1-9. |
31 | ALLEN D R, MARCOS A, MARY B, et al. Unsaturated fatty alcohol alkoxylates from natural oil metathesis: WO2013162737A1[P]. 2013-04-24. |
32 | BURDETT K A, HARRIS L D, MARGL P, et al. Renewable monomer feedstocks via olefin metathesis: fundamental mechanistic studies of methyl oleate ethenolysis with the first-generation grubbs catalyst[J]. Organometallics, 2004, 23(9): 2027-2047. |
33 | MARX V M, SULLIVAN A H, MELAIMI M, et al. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis[J]. Angewandte Chemie International Edition, 2015, 54(6): 1919-1923. |
34 | GAWIN R, KOZAKIEWICZ A, GUŃKA P A, et al. Bis(cyclic alkyl amino carbene) ruthenium complexes: a versatile, highly efficient tool for olefin metathesis[J]. Angewandte Chemie International Edition, 2017, 56(4): 981-986. |
35 | BYUN S, PARK S, CHOI Y, et al. Highly efficient ethenolysis and propenolysis of methyl oleate catalyzed by abnormal N-heterocyclic carbene ruthenium complexes in combination with a phosphine-copper cocatalyst[J]. ACS Catalysis, 2020, 10(18): 10592-10601. |
36 | ULLAH A, ARSHAD M. Remarkably efficient microwave-assisted cross-metathesis of lipids under solvent-free conditions[J]. ChemSusChem, 2017, 10(10): 2167-2174. |
37 | PRADHAN R A, ARSHAD M, ULLAH A. Solvent-free rapid ethenolysis of fatty esters from spent hen and other lipidic feedstock with high turnover numbers[J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 42-45. |
38 | BEHR A, KREMA S, KÄMPER A. Ethenolysis of ricinoleic acid methyl ester—An efficient way to the oleochemical key substance methyl dec-9-enoate[J]. RSC Advances, 2012, 2(33): 12775-12781. |
39 | ZIMMERER J, PINGEN D, HESS S K, et al. Integrated extraction and catalytic upgrading of microalgae lipids in supercritical carbon dioxide[J]. Green Chemistry, 2019, 21(9): 2428-2435. |
40 | SCHOTTEN C, PLAZA D, MANZINI S, et al. Continuous flow metathesis for direct valorization of food waste: an example of cocoa butter triglyceride[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1453-1459. |
41 | MUBOFU E B, MGAYA J E. Chemical valorization of cashew nut shell waste[M]. Tanzania: Springer International Publishing, 2018: 57-71. |
42 | ANILKUMAR P. Cashew nut shell liquid[M]. Vancouver: Springer, 2017: 1-19. |
43 | SHI Y, KAMER P C J, et al. Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid[J]. Green Chemistry, 2019, 21(5): 1043-53. |
44 | BAADER S, PODSIADLY P E, COLE-HAMILTON D J, et al. Synthesis of tsetse fly attractants from a cashew nut shell extract by isomerising metathesis[J]. Green Chemistry, 2014, 16(12): 4885-4890. |
45 | JULIS J, BARTLETT S A, BAADER S, et al. Selective ethenolysis and oestrogenicity of compounds from cashew nut shell liquid[J]. Green Chemistry, 2014, 16(5): 2846-2856. |
46 | SHINDE T, VARGA V, POLÁŠEK M, et al. Metathesis of cardanol over Ru catalysts supported on mesoporous molecular sieve SBA-15[J]. Applied Catalysis A: General, 2014, 478: 138-145. |
47 | SCHWEITZER D, MULLEN C A, BOATENG A A, et al. Biobased n-butanol prepared from poly-3-hydroxybutyrate: optimization of the reduction of n-butyl crotonate to n-butanol[J]. Organic Process Research & Development, 2015, 19(7): 710-714. |
48 | SOMLEVA M N, PEOPLES O P, SNELL K D. PHA Bioplastics, biochemicals, and energy from crops[J]. Plant Biotechnology Journal, 2013, 11(2): 233-252. |
49 | DELLOMONACO C, CLOMBURG J M, MILLER E N, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals[J]. Nature, 2011, 476(7360): 355-359. |
50 | LIU X, YU H, JIANG X, et al. Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1795-1804. |
51 | 王磊. 代谢工程改造解脂耶氏酵母产巴豆酸[D].武汉: 湖北工业大学, 2019. |
WANG L. Metabolic engineering of oleaginous yeast Yarrowia lipolytica to biosynthesis of crotonic acid from glucose[D]. Wuhan: Hubei University of Technology, 2019. | |
52 | SCHWEITZER D, SNELL K D. Acrylates via metathesis of crotonates[J]. Organic Process Research & Development, 2015, 19(7): 715-720. |
53 | SPEKREIJSE J, LE NȎTRE J, HAVEREN J VAN, et al. Simultaneous production of biobased styrene and acrylates using ethenolysis[J]. Green Chemistry, 2012, 14(10): 2747-2751. |
54 | GÜNTER B R. Flavours and fragrances: chemistry, bioprocessing and sustainability[M]. Berlin: Springer, 2007: 81. |
55 | BILEL H, HAMDI N, ZAGROUBA F, et al. Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis[J]. RSC Advances, 2012, 2(25): 9584-9589. |
56 | BAADER S, OHLMANN D M, GOOßEN L J. Isomerizing ethenolysis as an efficient strategy for styrene synthesis[J]. Chemistry—A European Journal, 2013, 19(30): 9807-9810. |
57 | JERMACZ I, MAJ J, MORZYCKI J W, et al. GC-MS analysis of β-carotene ethenolysis products and their synthesis as potentially active vitamin a analogues[J]. Toxicology Mechanisms and Methods, 2008, 18(6): 469-471. |
58 | LANGE J P, PRICE R, AYOUB P M, et al. Valeric biofuels: a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition, 2010, 49(26): 4479-4483. |
59 | ARIS R D, JOZEF P R F M, DONATO S. Process for the isolation of levulinic acid: WO2017009221A1[P]. 2016-07-08. |
60 | BOND J Q, MARTIN ALONSO D, WEST R M, et al. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water[J]. Langmuir, 2010, 26(21): 16291-16298. |
61 | NOBBS J D, ZAINAL N Z B, TAN J, et al. Bio-based pentenoic acids as intermediates to higher value-added mono- and dicarboxylic acids[J]. Chemistry Select, 2016, 1(3): 539-544. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |