Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 101-110.DOI: 10.16085/j.issn.1000-6613.2021-0379
• Energy processes and technology • Previous Articles Next Articles
LI Yunfei(), WANG Zhipeng, DUAN Lei, CHEN Liang, XU Shoudong, ZHANG Ding(), DUAN Donghong, LIU Shibin
Received:
2021-02-25
Revised:
2021-03-12
Online:
2021-11-09
Published:
2021-10-25
Contact:
ZHANG Ding
李云飞(), 王致鹏, 段磊, 陈良, 徐守冬, 张鼎(), 段东红, 刘世斌
通讯作者:
张鼎
作者简介:
李云飞(1996—),男,硕士研究生,研究方向为氢燃料电池。E-mail:基金资助:
CLC Number:
LI Yunfei, WANG Zhipeng, DUAN Lei, CHEN Liang, XU Shoudong, ZHANG Ding, DUAN Donghong, LIU Shibin. Research progress of ordered membrane electrode assembly for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 101-110.
李云飞, 王致鹏, 段磊, 陈良, 徐守冬, 张鼎, 段东红, 刘世斌. 质子交换膜燃料电池有序化膜电极研究进展[J]. 化工进展, 2021, 40(S1): 101-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0379
1 | 毛宗强. 燃料电池[M]. 北京: 化学工业出版社, 2005: 21-29. |
MAO Zongqiang. Fuel cell[M]. Beijing: Chemical Industry Press, 2005: 21-29. | |
2 | YE L, GAO Y, ZHU S, et al. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7241-7245. |
3 | WANG J J, YIN G P, SHAO Y Y, et al. Effect of carbon black support corrosion on the durability of Pt/C catalyst[J]. Journal of Power Sources, 2007, 171(2): 331-339. |
4 | TANG H, WANG S, JIANG S P, et al. A comparative study of CCM and hot-pressed MEAs for PEM fuel cells[J]. Journal of Power Sources, 2007, 170(1): 140-144. |
5 | WANG C, WANG S, ZHANG J, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(2/3): 310-320. |
6 | MIDDELMAN E. Improved PEM fuel cell electrodes by controlled self-assembly[J]. Fuel Cells Bulletin, 2002, 2002(11): 9-12. |
7 | TIAN Z Q, LIM S H, POH C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214. |
8 | TIAN Z Q, LIM S H, POH C K. Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells[J]. Carbon, 2011, 49(1): 82-88. |
9 | SHAO Y, KOU R, WANG J, et al. The durability dependence of Pt/CNT electrocatalysts on the nanostructures of carbon nanotubes: hollow- and bamboo-CNTs[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(10): 5811-5815. |
10 | GAN J, ZHANG J, ZHANG B, et al. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition[J]. Journal of Energy Chemistry, 2020, 45: 59-66. |
11 | BHARTI A, CHERUVALLY G, MULIANKEEZHU S. Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11622-11631. |
12 | GUO L, JIANG W J, ZHANG Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Cataltalysis, 2015, 5(5): 2903-2909. |
13 | JHA S, BHANDARY N, BASU S, et al. Electro-deposited Pt3Co on carbon fiber paper as Nafion-free electrode for enhanced electro-catalytic activity toward oxygen reduction reaction[J]. ACS Applied Energy Materials, 2019, 2(9): 6269-6279. |
14 | ZHANG C, XU L, SHAN N, et al. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres[J]. ACS Cataltalysis, 2014, 4(6): 1926-1930. |
15 | WU Z, LV Y, XIA Y, et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst[J]. Journal of the American Chemical Society, 2012, 134(4): 2236-2245. |
16 | SHRESTHA S, ASHEGHI S, TIMBRO J, et al. Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity[J]. Applied Catalysis A: General, 2013, 464/465: 233-242. |
17 | AMBROSIO E P, DUMITRESCU M A, FRANCIA C, et al. Ordered mesoporous carbons as catalyst support for PEM fuel cells[J]. Fuel Cells, 2009, 9(3): 197-200. |
18 | LI W Z, WANG X, CHEN Z W, et al. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell[J]. Langmuir, 2005, 21(21): 9386-9389. |
19 | MURATA S, IMANISHI M, HASEGAWA S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 25(3): 104-113. |
20 | 俞红梅, 姚德伟, 邵志刚, 等. 一种质子交换膜燃料电池有序催化层及其制备和应用: CN109921047A[P]. 2019-06-21. |
YU Hongmei, YAO Dewei, SHAO Zhigang, et al. Preparation and application of ordered catalyst layer for proton exchange membrane fuel cell: CN109921047A[P]. 2019-06-21. | |
21 | MARDLE P, JI X, WU J, et al. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells[J]. Applied Catalysis B: Environmenta, 2020, 260:118031. |
22 | 邓翔, 孟宪涛,邵宗平, 等. 一种质子交换膜燃料电池的双功能有序化膜电极: CN111224137A[P]. 2020-06-02. |
DENG Xiang, MENG Xiantao, SHAO Zongping, et al. A dual-function ordered membrane electrode for proton exchange membrane fuel cell: CN111224137A[P]. 2020-06-02. | |
23 | ZHANG L, WANG L Y, HOLT C M B, et al. Oxygen reduction reaction activity and electrochemical stability of thin-film bilayer systems of platinum on niobium oxide[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16463-16474. |
24 | SENEVIRATHNE K, HUI R, CAMPBELL S, et al. Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction[J]. Electrochimica Acta, 2012, 59: 538-547. |
25 | HUANG K, LI Y F, YAN L T, et al. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support[J]. RSC Advances2014, 4(19): 9701-9708. |
26 | HUANG C, DONG W J, DONG C L, et al. Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction[J]. Dalton Transactions, 2020, 49(5): 1398-1402. |
27 | HUANG S Y, GANESAN P, POPOV B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 71-77. |
28 | GUSTAVSSON M, EKSTROM H, HANARP R, et al. Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell[J]. Journal of Power Sources, 2007, 163(2): 671-678. |
29 | HUANG S Y, GANESAN P, POPOV B N. Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell[J]. ACS Catal., 2012, 2(5): 825-831. |
30 | JI Y, CHO Y I, JEON Y, et al. Design of active Pt on TiO2 based nanofibrous cathode for superior PEMFC performance and durability at high temperature[J]. Applied Catalysis B: Environmental, 2017, 204: 421-429. |
31 | PARK C, LEE E, LEE G, et al. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells[J]. Applied Catalysis B: Environmental, 2020, 268(5): 118414. |
32 | HE S Q, WU C X, SUN Z, et al. Uniform Pt nanoparticles supported on urchin-like mesoporous TiO2 hollow spheres as stable electrocatalysts for the oxygen reduction reaction[J]. Nanoscale, 2020, 12(19): 10656-10663. |
33 | KUMAR S, BHANGE S N, SONI R, et al. WO3 nanorods bearing interconnected Pt nanoparticle units as an activity-modulated and corrosion-resistant carbon-free system for polymer electrolyte membrane fuel cells[J]. ACS Applied Energy Materials, 2020, 3(2): 1908-1921. |
34 | D-H LIM, LEE W-J, WHELDON J, et al. Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 nanotube arrays as a cathode material for PEFCs[J]. Journal of the Electrochemical Society, 2010, 157(6): B862-B867. |
35 | JIANG S, YI B, ZHANG C, et al. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 80-88. |
36 | CHEN M, WANG M, YANG Z, et al. High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays[J]. Applied Surface Science, 2017, 406: 69-76. |
37 | OZKAN S, VALLE F, MAZARE A, et al. Optimized polymer electrolyte membrane fuel cell electrode using TiO2 nanotube arrays with well-defined spacing[J]. ACS Applied Nano Materials, 2020, 3(5): 4157-4170. |
38 | DEBE M K, SCHMOECKEL A K, VERNSTRORN G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011. |
39 | STEINBACH A, VLIET D V D, DURU C, et al. V.C.1 High-performance, durable, low-cost membrane electrode assemblies for transportation applications[R]. DOE Hydrogen and Fuel Cells Program, 2014. |
40 | DU S, POLLEE B G. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs[J]. International Journal of Hydrogen Energy, 2012, 37(23): 17892-17898. |
41 | JIANG S, YI B, CAO L, et al. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes[J]. Journal of Power Sources, 2016, 329: 347-354. |
42 | ZENG Y, ZHANG H, WANG Z, et al. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(15): 6521-6533. |
43 | DENG R, XIA Z, SUN R, et al. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 43: 33-39. |
44 | TAMURA T, KAWAKAMI H. Aligned lctropun nanofiber composite membranes for fuel cell electrolytes[J]. Nano Letters, 2010, 10: 1324-1328. |
45 | LEE C, JO S, CHOI J, et al. SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells[J]. Journal of Materials Science, 2013, 48(10): 3665-3671. |
46 | 张剑波, 周红茹, 司德春, 等. 一种有序化纳米纤维膜电极及其制备方法: CN107359355A [P]. 2017-11-17. |
ZHANG Jianbo, ZHOU Hongru, SI Dechun, et al. A kind of ordered nanofiber membrane electrode and its preparation method: CN 107359355A [P]. 2017-11-17. | |
47 | NING F, BAI C, QIN J, et al. Great improvement in the performance and lifetime of a fuel cell using a highly dense, well-ordered, and cone-shaped Nation array[J]. Journal of Materials Chemistry A, 2020, 8(11): 5489-5500. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[6] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[7] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[8] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[12] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[13] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |