Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4388-4396.DOI: 10.16085/j.issn.1000-6613.2019-1991
• Materials science and technology • Previous Articles Next Articles
MA Ailing1(), HUANG Guangxu2(), GENG Qianhao3, YAO Youheng2, LI Yuanyuan2, LIU Yingbin2
Received:
2019-12-12
Online:
2021-08-12
Published:
2021-08-05
Contact:
HUANG Guangxu
马爱玲1(), 黄光许2(), 耿乾浩3, 姚友恒2, 李媛媛2, 刘迎宾2
通讯作者:
黄光许
作者简介:
马爱玲(1971—),女,硕士,讲师,研究方向为矿物加工。E-mail:基金资助:
CLC Number:
MA Ailing, HUANG Guangxu, GENG Qianhao, YAO Youheng, LI Yuanyuan, LIU Yingbin. Preparation and electrochemical properties of B/N co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396.
马爱玲, 黄光许, 耿乾浩, 姚友恒, 李媛媛, 刘迎宾. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1991
样品编号 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 中孔率 /% | 平均孔径 /nm | 表面杂原子含量(XPS原子含量)/% | |||
---|---|---|---|---|---|---|---|---|---|---|
C | N | B | O | |||||||
BNHC-700 | 384 | 0.2130 | 0.136 | 0.077 | 36.15 | 2.22 | 72.97 | 6.04 | 3.97 | 17.01 |
BNHC-800 | 283 | 0.1741 | 0.103 | 0.0711 | 40.84 | 2.46 | 72.94 | 6.01 | 4.18 | 16.87 |
NHC-800 | 69 | 0.0165 | 0 | 0.0165 | 100.0 | 7.23 | 82.94 | 4.21 | 0 | 12.85 |
样品编号 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 | 中孔孔容 /cm3·g-1 | 中孔率 /% | 平均孔径 /nm | 表面杂原子含量(XPS原子含量)/% | |||
---|---|---|---|---|---|---|---|---|---|---|
C | N | B | O | |||||||
BNHC-700 | 384 | 0.2130 | 0.136 | 0.077 | 36.15 | 2.22 | 72.97 | 6.04 | 3.97 | 17.01 |
BNHC-800 | 283 | 0.1741 | 0.103 | 0.0711 | 40.84 | 2.46 | 72.94 | 6.01 | 4.18 | 16.87 |
NHC-800 | 69 | 0.0165 | 0 | 0.0165 | 100.0 | 7.23 | 82.94 | 4.21 | 0 | 12.85 |
1 | HUANG C H, ZHANG Q, CHOU T C, et al. Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage[J]. ChemSusChem, 2012, 5(3): 563-571. |
2 | NIU L, LI Z, HONG W, et al. Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors[J]. Electrochimica Acta, 2013, 108: 666-673. |
3 | YUN Y S, PARK M H, HOUNG S J, et al. Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3684-3690. |
4 | LOKHANDE C D, DUBAL D P, JOO O S. Metal oxide thin film based supercapacitors[J]. Current Applied Physics, 2011, 11(3): 255-270. |
5 | LEE M, WEE B H, HONG J D. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide[J]. Advanced Energy Materials, 2015, 5(7):1401890. |
6 | LEE J, SHIN D H, JANG J. Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage[J]. Energy and Environmental Science, 2015, 8(10): 3030-3039. |
7 | GUAN C, LIU J, WANG Y, et al. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability[J]. ACS Nano, 2015, 9(5): 5198. |
8 | BEI L, MEI Y, CHEN H, et al. Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors[J]. Journal of Power Sources, 2018, 397: 1-10. |
9 | XIA K, HUANG Z, ZHENG L, et al. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 365: 380-388. |
10 | LING M, ZHU D, LIU M, et al. Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors[J]. Chemical Engineering Journal, 2018, 347: 233-242. |
11 | HAO Q, XIA X, LEI W U, et al. Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors[J]. Carbon, 2015, 81 (1): 552-563. |
12 | WANG H, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2 (5): 781-794. |
13 | LI J, LIU K, GAO X, et al. Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity[J]. ACS Appl. Mater. Interfaces, 2015, 7 (44): 24622-24628. |
14 | VINU A, TERRONES M, GOLBERG D, et al. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods[J]. Chemistry of Materials, 2005, 17 (24): 5887-5890. |
15 | JING W, ZHOU D, SUN Z, et al. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors[J]. Advanced Functional Materials, 2013, 23 (18): 2322-2328. |
16 | WANG G, ZHANG J, SHUAI K, et al. Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors[J]. Electrochimica Acta, 2015, 153: 273-279. |
17 | LI F C, XU D Z, HAI W L, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J]. ACS Nano, 2012, 6 (8): 7092-7102. |
18 | CHEN H, XIONG Y, YU T, et al. Boron and nitrogen co-doped porous carbon with a high concentration of boron and its superior capacitive behavior[J]. Carbon, 2017, 113: 266-273. |
19 | GAO J, WANG X, ZHANG Y, et al. Boron-doped ordered mesoporous carbons for the application of supercapacitors[J]. Electrochimica Acta, 2016, 207: 266-274. |
20 | XIANG Y C, CHONG C, ZHONG J Z, et al. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability[J]. Journal of Power Sources, 2013, 230 (15): 50-58. |
21 | MIN Z, FAN P, ZHAO W, et al. Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors[J]. Carbon, 2014, 68 (3): 185-194. |
22 | LUO G, LIU L, ZHANG J, et al. Hole defects and nitrogen doping in graphene: implication for supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2013, 5 (21): 11184-11193. |
23 | WANG Q, YAN J, WEI T, et al. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors[J]. Carbon, 2013, 60: 481-487. |
24 | WANG H G, WU Z, MENG F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem, 2013, 6 (1): 56-60. |
25 | YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8 (3): 702-730. |
26 | YANG Z, REN J, ZHANG Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews, 2015, 115 (11): 5159-5223. |
27 | FAN Z, LIU Y, YAN J, et al. Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors[J]. Advanced Energy Materials, 2012, 2(4): 419-424. |
28 | SUN Y, WU Q, SHI G. Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4 (4): 1113-1132. |
29 | PUMERA M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science, 2011, 4 (3): 668-674. |
30 | ZHANG L L, ZHOU R, ZHAO X. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20 (29): 5983-5992. |
31 | SAHA S, JANA M, KHANRA P, et al. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device[J]. ACS Applied Materials & Interfaces, 2015, 7(26): 14211. |
32 | SHUO D, XIAO B H, ZHAO L M, et al. A simple approach to the synthesis of BCN graphene with high capacitance[J]. Nanotechnology, 2015, 26(4): 045402. |
33 | ZHONG S W, ANDREAS W, LONG C, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 2012, 24 (37): 5130-5135. |
34 | KONG L, CHEN Q, SHEN X, et al. Ionic liquid templated porous boron-doped graphitic carbon nitride nanosheet electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2017, 245: S0013468617311386. |
35 | ZHENG L, WANG Z, ZHANG M, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
36 | GENG Q H, HUANG G X, LIU Y B, et al. Facile synthesis of B/N co-doped 2D porous carbon nanosheets derived from ammonium humate for supercapacitor electrodes[J]. Electrochimica Acta, 2019, 298: 1-13. |
37 | JIAN W F, QUN X, JIA F C, et al. Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites[J]. Chemical Communications, 2010, 46 (35): 6563-6565. |
38 | LI J, YAO R, JU B, et al. Two-dimensional mesoporous carbon nanosheets as a high-performance anode material for lithium-ion batteries[J]. ChemPlusChem, 2013, 78(8): 797-800. |
39 | SUN K, YU S, HU Z, et al. Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor[J]. Electrochimica Acta, 2017, 231: 417-428. |
40 | GONG Y, LI D, LUO C, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. |
41 | NIU Q, GAO K, TANG Q, et al. Large-size graphene-like porous carbon nanosheets with controllable N-doped surface derived from sugarcane bagasse pith/chitosan for high performance supercapacitors[J]. Carbon, 2017, 123: 290-298. |
42 | EDISON T N J I, ATCHUDAN R, KARTHIK N, et al. Green synthesizedN-doped graphitic carbon sheets coated carbon cloth as efficient metal free electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14390-14399. |
43 | WANG J, YANG T, ZENG Z, et al. Facilely prepared, N,O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes[J]. Chemical Physics, 2018, 506: 17-25. |
44 | TABASSUM H, MAHMOOD A, WANG Q, et al. Hierarchical cobalt hydroxide and B/N co-doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors[J]. Sci. Rep., 2017, 7: 43084. |
45 | FUJISAWA K, CRUZ-SILVA R, YANG K S, et al. Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications[J]. Journal of Materials Chemistry A, 2014, 2(25): 9532-9540. |
46 | YU Z, LIJUN Y, SHENG C, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society, 2013, 135 (4): 1201-1204. |
47 | TANG C, LIU Y, YANG D, et al. Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors[J]. Carbon, 2017, 122: 538-546. |
48 | JIAO Y, ZHANG D, ZHAO J, et al. Meso- and micro- porous composite carbons derived from humic acid for supercapacitors[J]. Electrochimica Acta, 2014, 136 (8): 504-512. |
49 | WANG Y, XUAN H, LIN G, et al. A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application[J]. Journal of Power Sources, 2016, 319: 262-270. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[9] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[10] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[11] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[14] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[15] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |