Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1586-1593.DOI: 10.16085/j.issn.1000-6613.2020-0910
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
XIAO Xiangzhe1(), CHEN Siyuan1, TENG Jun1, DONG Shanyan1,2(), LIAN Junfeng1,2, ZHU Yichun1,2
Received:
2020-05-25
Online:
2021-03-17
Published:
2021-03-05
Contact:
DONG Shanyan
肖向哲1(), 陈思远1, 滕俊1, 董姗燕1,2(), 连军锋1,2, 朱易春1,2
通讯作者:
董姗燕
作者简介:
肖向哲(1997—),男,硕士研究生,研究方向为水处理技术与环境污染控制技术。E-mail:基金资助:
CLC Number:
XIAO Xiangzhe, CHEN Siyuan, TENG Jun, DONG Shanyan, LIAN Junfeng, ZHU Yichun. A new interpretation of anaerobic hydrolysis: rapid hydrolysis and slow hydrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1586-1593.
肖向哲, 陈思远, 滕俊, 董姗燕, 连军锋, 朱易春. 厌氧水解的新解读:快速水解和慢速水解[J]. 化工进展, 2021, 40(3): 1586-1593.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0910
能量密度 /kW·L-1 | PTA /U·mg-1 | AK /U·mg-1 | PTB /U·mg-1 | BK /U·mg-1 | OAATC /U·mg-1 | CoA转移酶 /U·mg-1 |
---|---|---|---|---|---|---|
0 | 0.13 | 1.92 | 0.0015 | 0.067 | 0.39 | 0.33 |
0.25 | 0.15 | 2.03 | 0.0017 | 0.074 | 0.42 | 0.38 |
0.5 | 0.17 | 2.50 | 0.0019 | 0.093 | 0.52 | 0.46 |
1.0 | 0.24 | 3.30 | 0.0026 | 0.116 | 0.70 | 0.60 |
2.0 | 0.22 | 2.87 | 0.0023 | 0.096 | 0.58 | 0.55 |
4.0 | 0.19 | 2.67 | 0.0021 | 0.089 | 0.56 | 0.50 |
能量密度 /kW·L-1 | PTA /U·mg-1 | AK /U·mg-1 | PTB /U·mg-1 | BK /U·mg-1 | OAATC /U·mg-1 | CoA转移酶 /U·mg-1 |
---|---|---|---|---|---|---|
0 | 0.13 | 1.92 | 0.0015 | 0.067 | 0.39 | 0.33 |
0.25 | 0.15 | 2.03 | 0.0017 | 0.074 | 0.42 | 0.38 |
0.5 | 0.17 | 2.50 | 0.0019 | 0.093 | 0.52 | 0.46 |
1.0 | 0.24 | 3.30 | 0.0026 | 0.116 | 0.70 | 0.60 |
2.0 | 0.22 | 2.87 | 0.0023 | 0.096 | 0.58 | 0.55 |
4.0 | 0.19 | 2.67 | 0.0021 | 0.089 | 0.56 | 0.50 |
1 | Wee Shen LEE, CHUA A S M, YEOH Hak Koon, et al. A review of the production and applications of waste-derived volatile fatty acids[J]. Chemical Engineering Journal, 2014, 235: 83-99. |
2 | LAGOA-COSTA B, KENNES C, VEIGA M C. Cheese whey fermentation into volatile fatty acids in an anaerobic sequencing batch reactor[J]. Bioresource Technology, 2020, 308: 123226. |
3 | GRACIA J, MOSQUERA J, MONTENEGRO C, et al. Maximization of the volatile fatty acids production from the fermentation of activated sludge[J]. Chemical Engineering Transactions, 2020, 79: 217-222. |
4 | 何顺, 李忠棠, 谭松凡, 等. 污泥协同香蕉秸秆中温厌氧发酵中pH对产酸的影响[J]. 环境工程, 2019, 37(2): 153-157. |
HE Shun, LI Zhongtang, TAN Songfan, et al. Effect of pH on production of acid in medium temperature anaerobic fermentation of sewage sludge and banana straw[J]. Environmental Engineering, 2019, 37(2): 153-157. | |
5 | 姜钰, 周宸宇, 张军, 等. 物料比对木薯渣与污泥干式厌氧共发酵产沼气的影响[J]. 环境工程, 2017, 35(4): 115-119. |
JIANG Yu, ZHOU Chenyu, ZHANG Jun, et al. Effect of mixing ratio on biogas produced by dry anaerobic co-digestion of cassava dregs and sewage sludge[J], Environmental Engineering, 2017, 35(4): 115-119. | |
6 | BRYANT M P. Microbial methane production — theoretical aspects[J]. Journal of Animal Science, 1979, 48(1): 193-201. |
7 | KIELY G, TAYFUR G, DOLAN C, et al. Physical and mathematical modelling of anaerobic digestion of organic wastes[J]. Water Research, 1997, 31(3): 534-540. |
8 | 贾舒婷, 张栋, 赵建夫, 等. 不同预处理方法促进初沉/剩余污泥厌氧发酵产沼气研究进展[J]. 化工进展, 2013, 32(1): 193-198. |
JIA Shuting, ZHANG Dong, ZHAO Jianfu, et al. Research on different pre-treatment methods for improving anaerobic digestion of primary/excess sludge of biogas production[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 193-198. | |
9 | ZHANG Dong, LI Xiaoshuai, JIA Shuting, et al. A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production[J]. Water Science and Technology, 2015, 72(5): 678-688. |
10 | LIU Hongbo, WANG Yuanyuan, WANG Ling, et al. Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J]. Water Research, 2017, 119: 225-233. |
11 | XIE Guojun, LIU Bingfeng, WANG Qilin, et al. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production[J]. Water Research, 2016, 93: 56-64. |
12 | SALSABIL M R, LAURENT J, CASELLAS M, et al. Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 323-333. |
13 | ZHU Yanfang, LIU Hongbo, LIU He, et al. Filtration characteristics of anaerobic fermented sewage sludge for fatty acids production[J]. Separation and Purification Technology, 2015, 142: 8-13. |
14 | MA Sijia, HU Haidong, WANG Jinfeng, et al. The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production[J]. Water Research, 2019, 164: 114924. |
15 | LI Dongzhe, ZHOU Yan, TAN Youming, et al. Alkali-solubilized organic matter from sludge and its degradability in the anaerobic process[J]. Bioresource Technology, 2016, 200: 579-586. |
16 | 邢奕, 王志强, 洪晨, 等. 不同pH值下胞外聚合物对污泥脱水性能及束缚水含量的影响[J]. 工程科学学报, 2015, 37(10): 1387-1395. |
XING Yi, WANG Zhiqiang, HONG Chen, et al. Influence of extracellular polymeric substances on sludge dewaterability and bound water content at various pH values[J]. Chinese Journal of Engineering, 2015, 37(10): 1387-1395. | |
17 | RUIZ-HERNANDO M, CABANILLAS E, LABANDA J, et al. Ultrasound, thermal and alkali treatments affect extracellular polymeric substances (EPSs) and improve waste activated sludge dewatering[J]. Process Biochemistry, 2015, 50(3): 438-446. |
18 | WATSON J D. Molecular Biology of the Gene[M]. 6th ed. California:Benjamin /Cummings Publishing Company, 2008. |
19 | 晏波, 胡成生, 朱凡, 等. 磷酸铵镁沉淀法去除NH3-N的影响因素及应用研究[J]. 环境化学, 2006, 24(6): 799-807. |
YAN Bo, HU Chengsheng, ZHU Fan, et al. Experiment study for ammonia-nitrogen removal from wastewater by magnesium ammonium phosphate precipitation[J]. Environmental Chemistry, 2006, 24(6): 799-807. | |
20 | LI Yangyang, JIN Yiying, LI Jinhui, et al. Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion[J]. Energy, 2017, 118: 377-386. |
21 | JIN Yiying, LI Yangyang, LI Jinhui. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion[J]. Journal of Environmental Management, 2016, 180: 291-300. |
22 | MAGDALENA J A, GONZÁLEZ-FERNÁNDEZ C. Archaea inhibition: strategies for the enhancement of volatile fatty acids production from microalgae[J]. Waste Management, 2020, 102: 222-230. |
23 | LÜ Hang, LIU Daoguang, ZHANG Yanlin, et al. Effects of temperature variation on wastewater sludge electro-dewatering[J]. Journal of Cleaner Production, 2019, 214: 873-880. |
24 | YUAN Qiuyan, SPARLING R, OLESZKIEWICZ J A. VFA generation from waste activated sludge: effect of temperature and mixing[J]. Chemosphere, 2011, 82(4): 603-607. |
25 | Hyun Uk CHO, KIM Young Mo, CHOI Yunnam, et al. Influence of temperature on volatile fatty acid production and microbial community structure during anaerobic fermentation of microalgae[J]. Bioresource Technology, 2015, 191: 475-480. |
26 | LIN Richen, CHENG Jun, DING Lingkan, et al. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges[J]. Chemical Engineering Journal, 2018, 350: 681-691. |
27 | LIU Yali, LI Xin, KANG Xiaorong, et al. Effect of extracellular polymeric substances disintegration by ultrasonic pretreatment on waste activated sludge acidification[J]. International Biodeterioration & Biodegradation, 2015, 102: 131-136. |
28 | YAN Yuanyuan, FENG Leiyu, ZHANG Chaojie, et al. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0[J]. Water Research, 2010, 44(11): 3329-3336. |
29 | PILLI S, YAN Song, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations - computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166: 374-386. |
30 | LU Dan, XIAO Keke, CHEN Yun, et al. Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: from macro to micro[J]. Water Research, 2018, 142: 138-146. |
31 | TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009. |
32 | Sikyung CHO, SHIN Hangsik, KIM Donghoon. Waste activated sludge hydrolysis during ultrasonication: two-step disintegration[J]. Bioresource Technology, 2012, 121: 480-483. |
33 | ZHAO Jianwei, WANG Dongbo, LIU Yiwen, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation[J]. Bioresource Technology, 2018, 249: 431-438. |
34 | WANG Xu, LI Yanbo, ZHANG Ya, et al. Stepwise pH control to promote synergy of chemical and biological processes for augmenting short-chain fatty acid production from anaerobic sludge fermentation[J]. Water Research, 2019, 155: 193-203. |
35 | AGABO-GARCÍA C, PÉREZ M, RODRÍGUEZ-MORGADO B, et al. Biomethane production improvement by enzymatic pre-treatments and enhancers of sewage sludge anaerobic digestion[J]. Fuel, 2019, 255: 115713. |
36 | KIM H J, CHOI Y G, KIM G D, et al. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste[J]. Water Science and Technology, 2005, 52(10/11): 51-59. |
37 | MLAIK N, KHOUFI S, HAMZA M, et al. Enzymatic pre-hydrolysis of organic fraction of municipal solid waste to enhance anaerobic digestion[J]. Biomass and Bioenergy, 2019, 127: 105286. |
38 | ZHAO Xiaoling, ZHENG Zehui, CAI Yafan, et al. Accelerated biomethane production from lignocellulosic biomass: pretreated by mixed enzymes secreted by Trichoderma viride and Aspergillus sp[J]. Bioresource Technology, 2020, 309: 123378. |
39 | BAHREINI G, NAZARI L, Dang HO, et al. Enzymatic pre-treatment for enhancement of primary sludge fermentation[J]. Bioresource Technology, 2020, 305: 123071. |
40 | CHEN Yongdong, YANG Haifeng, ZHAO Ziyan, et al. Comprehensively evaluating the digestive performance of sludge with different lignocellulosic components in mesophilic anaerobic digester[J]. Bioresource Technology, 2019, 293: 122042. |
41 | YU Shuyu, ZHANG Guangming, LI Jianzheng, et al. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge[J]. Bioresource Technology, 2013, 146: 758-761. |
42 | WEIDE T, BAQUERO C D, SCHOMAKER M, et al. Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure)[J]. Biomass and Bioenergy, 2020, 132: 105442. |
43 | GUAN Renpeng, YUAN Xingzhong, WU Zhibin, et al. Functionality of surfactants in waste-activated sludge treatment: a review[J]. Science of the Total Environment, 2017, 609: 1433-1442. |
44 | ZHOU Aijuan, LIU Wenzong, VARRONE C, et al. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis[J]. Bioresource Technology, 2015, 192: 835-840. |
45 | PAN Xiaofang, SUN Jian, ZHANG Youchi, et al. Effect of sodium dodecyl benzene sulfonate (SDBS) on the performance of anaerobic co-digestion with sewage sludge, food waste, and green waste[J]. Chemical Engineering Communications, 2020, 207(2): 242-252. |
46 | ZHOU Aijuan, YANG Chunxue, GUO Zechong, et al. Volatile fatty acids accumulation and rhamnolipid generation in situ from waste activated sludge fermentation stimulated by external rhamnolipid addition[J]. Biochemical Engineering Journal, 2013, 77: 240-245. |
47 | HUANG Xiangfeng, SHEN Changming, LIU Jia, et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants[J]. Chemical Engineering Journal, 2015, 264: 280-290. |
48 | WU Qinglian, GUO Wanqian, ZHENG Heshan, et al. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses[J]. Bioresource Technology, 2016, 216: 653-660. |
49 | HUANG Xiaoding, ZHAO Jianwei, XU Qiuxiang, et al. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue[J]. Bioresource Technology, 2019, 274: 430-438. |
50 | ABDULLAH R, UEDA K, SAKA S. Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water[J]. Journal of Wood Science, 2014, 60(4): 278-286. |
51 | GUO Zechong, ZHOU Aijuan, YANG Chunxue, et al. Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: carbon source composition regulates community functions[J]. Biotechnology for Biofuels, 2015, 8(1): 192. |
52 | HUANG Jingang, ZHOU Rongbing, CHEN Jianjun, et al. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass[J]. Bioresource Technology, 2016, 211: 80-86. |
[1] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[2] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[3] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[4] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[5] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[6] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[7] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[8] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[9] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[10] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[11] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[12] | ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617. |
[13] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[14] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
[15] | WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |