Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (1): 354-372.DOI: 10.16085/j.issn.1000-6613.2022-0573

• Biochemical and pharmaceutical engineering • Previous Articles     Next Articles

Co-utilization of xylose and glucose to produce chemicals by microorganisms

WANG Chuandong1,2,3(), ZHANG Junqi1,2(), LIU Dingyuan1,2, MA Yuanyuan4, LI Feng1,2(), SONG Hao1,2()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
    3.Qingdao Institute of Ocean Engineering of Tianjin University Ltd. , Qingdao 266237, Shandong, China
    4.School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • Received:2022-04-06 Revised:2022-06-11 Online:2023-02-20 Published:2023-01-25
  • Contact: LI Feng, SONG Hao

微生物共利用木糖和葡萄糖生产化学品研究进展

王川东1,2,3(), 张君奇1,2(), 刘丁源1,2, 马媛媛4, 李锋1,2(), 宋浩1,2()   

  1. 1.天津大学化工学院,天津 300072
    2.天津大学合成生物学前沿科学中心和系统生物工程教育部重点实验室,天津 300072
    3.天津大学(青岛)海洋工程研究院有限公司,山东 青岛 266237
    4.天津大学海洋科学与技术学院,天津 300072
  • 通讯作者: 李锋,宋浩
  • 作者简介:王川东(1990—),男,硕士研究生,研究方向为合成生物学。E-mail:1137866329@qq.com
    张君奇(1992—),男,博士研究生,研究方向为合成生物学。E-mail:1871898438@qq.com
  • 基金资助:
    国家重点研发计划(2018YFA0901300);国家自然科学基金(32071411)

Abstract:

Lignocellulosic biomass is abundant which has been proved to be a promising renewable resource in energy, chemical and pharmaceutical, etc. The efficient hydrolysis and utilization of lignocellulose are limited by the existence of hydrogen bond and covalent bond between its components, which require complicated pretreatment methods, such as acid, alkali, high temperature, organic solvent and enzymatic hydrolysis to overcome. The main component of lignocellulosic hydrolysates is the mixture of hexose (60%—70%, mainly glucose) and pentose (30%—40%, mainly xylose). Aiming at the utilization efficiency of xylose and glucose in the hydrolysates, this paper reviewed xylose and glucose co-fermentation in genetically engineered microorganisms for the production of alcohol, biolipids, γ-PGA and organic acids, and described the the research progress in reconstruction of metabolic pathways, regulations of gene level and fermentation technology optimization. Finally, the main characteristics of recent research, technical bottlenecks and future research directions in this field were summarized from the perspectives of strain screening, gene and metabolic engineering regulation, immobilization of cells, product treatment and fermentation process, in order to obtain more research methods and ideas.

Key words: xylose metabolism, glucose metabolism, fermentation, bioenergy, alcohol, organic acids

摘要:

木质纤维素生物质是储量丰富的可再生资源,在能源、化工及医药领域具有广阔的应用前景。木质纤维素各组分因氢键和共价键的存在而结合紧密,需经酸、碱、高温、有机溶剂等预处理后才能高效酶解利用,其水解产物的主要成分为己糖(60%~70%,葡萄糖为主)和戊糖(30%~40%,木糖为主)的混合物。本文主要针对水解液中木糖和葡萄糖的共利用效率相关问题,以基因工程改造微生物利用木糖和葡萄糖共发酵生产醇类、生物油脂、γ-聚谷氨酸及有机酸等生物基化学品为主线,从代谢途径重构、基因水平调控及发酵技术优化等方面综述了近年来的研究进展。最后,从菌株筛选、基因与代谢工程调控、细胞固定化、产物处理及发酵工艺等层面总结了该领域目前的研究特点、技术瓶颈和未来的研究方向与思路。

关键词: 木糖代谢, 葡萄糖代谢, 发酵, 生物能源, 醇, 有机酸

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd