Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1238-1247.DOI: 10.16085/j.issn.1000-6613.2020-2008
• Special column:Green biomanufacturing • Previous Articles Next Articles
ZHAO Jing1,2,3(), WANG Pan1,2,3, LIU Yannan1,2,3, FU Rongzhan1,2,3, DUAN Zhiguang1,2,3, FAN Daidi1,2,3()
Received:
2020-10-08
Online:
2021-03-17
Published:
2021-03-05
Contact:
FAN Daidi
赵婧1,2,3(), 王盼1,2,3, 刘彦楠1,2,3, 傅荣湛1,2,3, 段志广1,2,3, 范代娣1,2,3()
通讯作者:
范代娣
作者简介:
赵婧(1986—),博士,副教授,研究方向为抗癌药物、生物医用材料。E-mail:基金资助:
CLC Number:
ZHAO Jing, WANG Pan, LIU Yannan, FU Rongzhan, DUAN Zhiguang, FAN Daidi. Recent advances in biotransformation of ginsenosides[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1238-1247.
赵婧, 王盼, 刘彦楠, 傅荣湛, 段志广, 范代娣. 人参皂苷的定向生物转化研究进展[J]. 化工进展, 2021, 40(3): 1238-1247.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2008
底物 | 产物 | 转化菌株 | 特点 | 文献 |
---|---|---|---|---|
红参提取物 | Rd | Lactobacillus plantarum KCCM 11613P | 益生菌转化人参皂苷 | [ |
Rb1 | CK | Lactobacillus paralimentarius LH4 | 益生菌转化人参皂苷 | [ |
Rb1 | Rg3、Rh2 | Lactobacillus paracasei subsp. tolerans MJM60396 | 益生菌转化人参皂苷 | [ |
Rb1 | Rd | Lactobacillus rhamnosus GG | 益生菌转化人参皂苷;MRS培养基中添加20g/L纤维二糖提高益生菌β-葡萄糖苷酶产量 | [ |
Rb2、Rc | Rd | Bifidobacterium longum RD47 | 益生菌转化人参皂苷;MRS培养基中添加20g/L抗坏血酸提高α-L-阿拉伯呋喃糖苷酶和α-L-阿拉伯吡喃糖苷酶活性 | [ |
Rb1 | Rg3、CK | Lactococcus lactis(recombinant) | 基因改造益生菌,通过单一菌株发酵及两种菌株顺序发酵分别实现了Rb1向Rg3和CK的转化 | [ |
Rb1 | Rg3、CK | Cordyceps sinensis, Ascomycota sp | 药用虫草真菌转化人参皂苷 | [ |
Rb1 | Rd | Paecilomyces hepiali | 药用虫草真菌蝙蝠蛾拟青霉转化人参皂苷,同时人参促进虫草功效成分腺苷、虫草素和甘露醇的合成,实现协同增效 | [ |
Rb1、Rb3 | CK、C-Mx、 C-Mc | Fusarium sacchari | 土壤真菌转化人参茎叶皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rg1、Rg2、Rh1 | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rh1 | Aspergillus oryzae | GRAS认证真菌转化人参皂苷 | [ |
红参提取物 | Rd、F2、CK | Saccharomyces cerevisiae HJ-014 | 米酒酿酒酵母转化红参乙醇提取物总皂苷 | [ |
Rc | Rd | Cellulosimicrobium aquatile Lyp51 | 酒曲微生物转化人参皂苷 | [ |
Rb1 | CK | Paecilomyces bainier sp. 229 | 人参土壤真菌转化人参皂苷,通过菌种诱变和发酵工艺优化,提高了转化效率,将发酵体积扩大至6L | [ |
Rb1 | Rg3、CK | GE17-7,GE17-18 | 人参内生细菌及真菌转化人参皂苷 | [ |
底物 | 产物 | 转化菌株 | 特点 | 文献 |
---|---|---|---|---|
红参提取物 | Rd | Lactobacillus plantarum KCCM 11613P | 益生菌转化人参皂苷 | [ |
Rb1 | CK | Lactobacillus paralimentarius LH4 | 益生菌转化人参皂苷 | [ |
Rb1 | Rg3、Rh2 | Lactobacillus paracasei subsp. tolerans MJM60396 | 益生菌转化人参皂苷 | [ |
Rb1 | Rd | Lactobacillus rhamnosus GG | 益生菌转化人参皂苷;MRS培养基中添加20g/L纤维二糖提高益生菌β-葡萄糖苷酶产量 | [ |
Rb2、Rc | Rd | Bifidobacterium longum RD47 | 益生菌转化人参皂苷;MRS培养基中添加20g/L抗坏血酸提高α-L-阿拉伯呋喃糖苷酶和α-L-阿拉伯吡喃糖苷酶活性 | [ |
Rb1 | Rg3、CK | Lactococcus lactis(recombinant) | 基因改造益生菌,通过单一菌株发酵及两种菌株顺序发酵分别实现了Rb1向Rg3和CK的转化 | [ |
Rb1 | Rg3、CK | Cordyceps sinensis, Ascomycota sp | 药用虫草真菌转化人参皂苷 | [ |
Rb1 | Rd | Paecilomyces hepiali | 药用虫草真菌蝙蝠蛾拟青霉转化人参皂苷,同时人参促进虫草功效成分腺苷、虫草素和甘露醇的合成,实现协同增效 | [ |
Rb1、Rb3 | CK、C-Mx、 C-Mc | Fusarium sacchari | 土壤真菌转化人参茎叶皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rg1、Rg2、Rh1 | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rh1 | Aspergillus oryzae | GRAS认证真菌转化人参皂苷 | [ |
红参提取物 | Rd、F2、CK | Saccharomyces cerevisiae HJ-014 | 米酒酿酒酵母转化红参乙醇提取物总皂苷 | [ |
Rc | Rd | Cellulosimicrobium aquatile Lyp51 | 酒曲微生物转化人参皂苷 | [ |
Rb1 | CK | Paecilomyces bainier sp. 229 | 人参土壤真菌转化人参皂苷,通过菌种诱变和发酵工艺优化,提高了转化效率,将发酵体积扩大至6L | [ |
Rb1 | Rg3、CK | GE17-7,GE17-18 | 人参内生细菌及真菌转化人参皂苷 | [ |
底物 | 产物 | 转化酶及其来源微生物 | 特点 | 文献 |
---|---|---|---|---|
人参提取物 | CK | Sulfolobus solfataricus β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK、CY、C-Mc | Sulfolobus acidocaldarius β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc | CK | Caldicellulosiruptor bescii β-糖苷酶 | 能够同时转化多种常见人参皂苷,转化率可达100%,产率可达600μmol/(L·h) | [ |
Rb1、Rb2、Rc | CK、CY、C-Mc | Armillaria mellea β-糖苷酶 | 能够同时转化多种常见人参皂苷,蜜环菌作为功能食品有望与人参皂苷实现协同增效 | [ |
Rb1、Rb2、Re | CK | Sulfolobus solfataricus β-糖苷酶 Thermotoga petrophila α-L-阿拉伯呋喃糖苷酶 | 人参提取物、红参提取物及人参叶提取物向CK的转化率可达100%,产率分别可达276mg/(L·h)、196mg/(L·h)及420mg/(L·h) | [ |
Rb1、Rb2、Rc、Rd | 20(S)-Rg3 | Thermotoga petrophlia β-葡萄糖苷酶 Thermotoga thermarum DSM5069 Thermotoga petrophlia β-葡萄糖苷酶 | 能够在3h内、90℃、pH 5.0条件下将10g/L PPD型总皂苷转化为3.93g/L 20(S)-Rg3,转化率可达98.19%,产率可达1.31g/(L·h) | [ |
底物 | 产物 | 转化酶及其来源微生物 | 特点 | 文献 |
---|---|---|---|---|
人参提取物 | CK | Sulfolobus solfataricus β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK、CY、C-Mc | Sulfolobus acidocaldarius β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc | CK | Caldicellulosiruptor bescii β-糖苷酶 | 能够同时转化多种常见人参皂苷,转化率可达100%,产率可达600μmol/(L·h) | [ |
Rb1、Rb2、Rc | CK、CY、C-Mc | Armillaria mellea β-糖苷酶 | 能够同时转化多种常见人参皂苷,蜜环菌作为功能食品有望与人参皂苷实现协同增效 | [ |
Rb1、Rb2、Re | CK | Sulfolobus solfataricus β-糖苷酶 Thermotoga petrophila α-L-阿拉伯呋喃糖苷酶 | 人参提取物、红参提取物及人参叶提取物向CK的转化率可达100%,产率分别可达276mg/(L·h)、196mg/(L·h)及420mg/(L·h) | [ |
Rb1、Rb2、Rc、Rd | 20(S)-Rg3 | Thermotoga petrophlia β-葡萄糖苷酶 Thermotoga thermarum DSM5069 Thermotoga petrophlia β-葡萄糖苷酶 | 能够在3h内、90℃、pH 5.0条件下将10g/L PPD型总皂苷转化为3.93g/L 20(S)-Rg3,转化率可达98.19%,产率可达1.31g/(L·h) | [ |
1 | WONG A S T, CHE C M, LEUNG K W. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview[J]. Natural Product Reports, 2015, 32(2): 256-272. |
2 | Future Market Insights. Ginseng market [EB/OL]. [2020-05-15]. . |
3 | 李伟娜,蒋云云,刘彦楠,等. 人参皂苷单体定向转化的生物催化及应用进展[J]. 生物工程学报, 2019, 35(9): 1590-1606. |
LI W N, JIANG Y Y, LIU Y N, et al. Biocatalytic strategies in producing ginsenoside by glycosidase-a review[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1590-1606. | |
4 | XU X H, LI T, FONG C M V, et al. Saponins from chinese medicines as anticancer agents[J]. Molecules, 2016, 21(10): 1326-1353. |
5 | PARK C S, YOO M H, NOH K H, et al. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases[J]. Applied Microbiology and Biotechnology, 2010, 87(1): 9-19. |
6 | LEUNG K W, WONG A S. Pharmacology of ginsenosides: a literature review[J]. Chinese Medical Journal, 2010, 5: 20-27. |
7 | KIM D H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng[J]. Journal of Ginseng Research, 2012, 36(1): 1-15. |
8 | HU M L, YANG J, QU L L, et al. Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-kappa B pathway in lung adenocarcinoma[J]. Food & Function, 2020, 11(1): 456-471. |
9 | SHAO J J, ZHENG X Y, QU L L, et al. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model[J]. Food & Function, 2020, 11(2): 1245-1257. |
10 | WEI B, DUAN Z G, ZHU C H, et al. Anti-anemia effects of ginsenoside Rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia[J]. Food & Function, 2018, 9(4): 2447-2455. |
11 | LIU Y, DENG J J, FAN D D. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway[J]. Food & Function, 2019, 10(5): 2538-2551. |
12 | QU L L, ZHU Y Y, LIU Y N, et al. Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis[J]. Food and Chemical Toxicology, 2019, 126: 277-284. |
13 | WU Q, DENG J J, FAN D D, et al. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells[J]. Biochemical Pharmacology, 2018, 148: 64-74. |
14 | DENG X Q, ZHAO J Q, QU L L, et al. Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer[J]. Biochemical Pharmacology, 2020, 17: 114038-114056. |
15 | DUAN Z G, WEI B, DENG J J, et al. The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo[J]. Biochemical and Biophysical Research Communications, 2018, 499(3): 482-487. |
16 | LIU Y N, FAN D D. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model[J]. Food & Function, 2018, 9(11): 5513-5527. |
17 | LIU Y N, FAN D D. The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K[J]. Nutrients, 2020, 12(1): 246-265. |
18 | WEI Y G, YANG H X, ZHU C H, et al. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5107-5117. |
19 | ZHU Y Y, ZHU C H, YANG H X, et al. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice[J]. Pharmacological Research, 2020, 155: 104746-104757. |
20 | DENG J J, LIU Y, DUAN Z G, et al. Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice[J]. Frontiers in Pharmacology, 2017, 8: 506-517. |
21 | LIU Y N, FAN D D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer[J]. Biochemical Pharmacology, 2019, 168: 285-304. |
22 | DUAN Z G, DENG J J, DONG Y F, et al. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo[J]. Food & Function, 2017, 8(10): 3723-3736. |
23 | HONG Y N, FAN D D. Ginsenoside Rk1 induces cell death through ROS-mediated PTEN/PI3K/Akt/mTOR signaling pathway in MCF-7 cells[J]. Journal of Functional Foods, 2019, 57: 255-265. |
24 | HONG Y N, FAN D D. Ginsenoside Rk1 induces cell cycle arrest and apoptosis in MDA-MB-231 triple negative breast cancer cells[J]. Toxicology, 2019, 418: 22-31. |
25 | 范代娣,段志广,惠俊峰,等. 一种利用原人参二醇组皂苷大规模转化生产人参皂苷Rk1的方法: CN201610344506.3[P]. 2016-10-12. |
FAN D D, DUAN Z G, HUI J F, et al. A method for large-scale conversion of protopanaxadiol saponins to ginsenoside Rk1: CN201610344506.3[P]. 2016-10-12. | |
26 | KU S. Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: a mini review[J]. Molecules, 2016, 21(5): 645-656. |
27 | JUNG J, JANG H J, EOM S J, et al. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects[J]. Journal of Ginseng Research, 2019, 43(1): 20-26. |
28 | QUAN L H, KIM Y J, LI G H, et al. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius[J]. World Journal of Microbiology & Biotechnology, 2013, 29(6): 1001-1007. |
29 | PALANIYANDI S A, SON B M, DAMODHARAN K, et al. Fermentative transformation of ginsenoside Rb1 from Panax ginseng C. A. Meyer to Rg(3) and Rh-2 by Lactobacillus paracasei subsp. tolerans MJM60396[J]. Biotechnology and Bioprocess Engineering, 2016, 21(5): 587-594. |
30 | KU S, YOU H J, PARK M S, et al. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG[J]. Journal of Microbiology and Biotechnology, 2016, 26(7): 1206-1215. |
31 | KU S, YOU H J, PARK M S, et al. Effects of ascorbic acid on alpha-l-arabinofuranosidase and alpha-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(6): 857-865. |
32 | LI L, LEE S J, YUAN Q P, et al. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis[J]. Journal of Ginseng Research, 2018, 42(4): 412-418. |
33 | LI F, WU Z, SUI X. Biotransformation of ginsenoside Rb1 with wild Cordyceps sinensis and Ascomycota sp. and its antihyperlipidemic effects on the diet-induced cholesterol of zebrafish[J]. Journal of Food Biochemistry, 2020, 44(6): e13192. |
34 | 马子君,牛耀祥,高陆,等. 人参对冬虫夏草蝙蝠蛾拟青霉固体发酵的影响[J]. 人参研究, 2015(2): 11-14. |
MA Z J, NIU Y X, GAO L, et al. Effects of Panax ginseng C.A.Mey on the matrix solid-state fermentation of Paecilomyces hepiali[J]. Ginseng Research, 2015(2): 11-14. | |
35 | HAN Y, SUN B, JIANG B, et al. Microbial transformation of ginsenosides Rb1, Rb3 and Rc by Fusarium sacchari[J]. Journal of Applied Microbiology, 2010, 109(3): 792-798. |
36 | LIU C Y, ZHOU R X, SUN C K, et al. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848[J]. Journal of Ginseng Research, 2015, 39(3): 221-229. |
37 | 吴秀丽,刘成,陈靖. 黑曲霉Aspergillus niger 对人参皂苷Re的微生物转化[J]. 中国当代医药, 2011, 18(33): 7-9. |
WU X L, LIU C, CHEN J. Microbial transformation of ginsenoside Re by Aspergillus niger[J]. China Modern Medicine, 2011, 18(33): 7-9. | |
38 | LI Z P, AHN H J, KIM N Y, et al. Korean ginseng berry fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae: ginsenoside analyses and anti-proliferative activities[J]. Biological & Pharmaceutical Bulletin, 2016, 39(9): 1461-1467. |
39 | CHOI H J, KIM E A, KIM D H, et al. The bioconversion of red ginseng ethanol extract into compound K by Saccharomyces cerevisiae HJ-014[J]. Mycobiology, 2014, 42(3): 256-261. |
40 | ZUO S S, WANG Y C, ZHU L, et al. Cloning and characterization of a ginsenoside-hydrolyzing α-L-arabinofuranosidase, CaAraf51, from Cellulosimicrobium aquatile Lyp51[J]. Current Microbiology, 2020, 77(10): 2783-2791. |
41 | ZHOU W, YAN Q, LI J Y, et al. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229[J]. Journal of Applied Microbiology, 2008, 104(3): 699-706. |
42 | ZHOU W, HUANG H, ZHU H Y, et al. New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/beta-catenin signaling activation[J]. Journal of Ginseng Research, 2018, 42(2): 199-207. |
43 | FU Y, YIN Z H, YIN C Y. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng[J]. Journal of Applied Microbiology, 2017, 122(6): 1579-1585. |
44 | FU Y, YIN Z H, WU L P, et al. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng[J]. Letters in Applied Microbiology, 2016, 63(3): 196-201. |
45 | NOH K H, SON J W, KIM H J, et al. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus[J]. Bioscience Biotechnology and Biochemistry, 2009, 73(2): 316-321. |
46 | NOH K H, OH D K. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius[J]. Biological & Pharmaceutical Bulletin, 2009, 32(11): 1830-1835. |
47 | QUAN L H, MIN J W, JIN Y, et al. Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum[J]. Journal of Agricultural and Food Chemistry, 2012, 60(14): 3776-3781. |
48 | SHIN K C, KIM T H, CHOI J H, et al. Complete biotransformation of protopanaxadiol-type ginsenosides to 20-O-β-glucopyranosyl-20(S)-protopanaxadiol using a novel and thermostable β-glucosidase[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2822-2829. |
49 | UPADHYAYA J, KIM M J, KIM Y H, et al. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea[J]. Journal of Ginseng Research, 2016, 40(2): 105-112. |
50 | UPADHYAYA J, YOON M S, KIM M J, et al. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia[J]. AMB Express, 2016, 6: 112-125. |
51 | KIM M J, UPADHYAYA J, YOON M S, et al. Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by beta-glycosidase purified from Armillaria mellea mycelia[J]. Journal of Ginseng Research, 2018, 42(4): 504-511. |
52 | KIM T H, YANG E J, SHIN K C, et al. Enhanced production of β-D-glycosidase and α-L-arabinofuranosidase in recombinant Escherichia coli in fed-batch culture for the biotransformation of ginseng leaf extract to ginsenoside compound K[J]. Biotechnology and Bioprocess Engineering, 2018, 23(2): 183-193. |
53 | ZHANG S, LUO J, XIE J, et al. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(S)-Rg3 by three thermostable glycosidases[J]. Journal of Applied Microbiology, 2020, 128(3): 721-734. |
54 | WEI W, WANG P P, WEI Y J, et al. Characterization of Panax ginseng UDP-glycosyl transferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Molecular Plant, 2015, 8(9): 1412-1424. |
55 | ZHAO H. Methods for stabilizing and activating enzymes in ionic liquids-a review[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(7): 891-907. |
56 | LI W N, FAN D D. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(9): 3807-3823. |
57 | JUNEIDI I, HAYYAN M, HASHIM M A, et al. Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction[J]. Biochemical Engineering Journal, 2017, 117: 129-138. |
58 | XU W J, HUANG Y K, LI F, et al. Improving β-glucosidase biocatalysis with deep eutectic solvents based on choline chloride[J]. Biochemical Engineering Journal, 2018, 138: 37-46. |
59 | HAN X, LI W N, DUAN Z G, et al. Biocatalytic production of compound K in a deep eutectic solvent based on choline chloride using a substrate fed-batch strategy[J]. Bioresource Technology, 2020, 305: 123039-123047. |
60 | MA Z, MI Y, HAN X, et al. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium[J]. Bioprocess and Biosystems Engineering, 2020, 43(7): 1195-1208. |
61 | SHELDON R A, PELT S VAN. Enzyme immobilisation in biocatalysis: why, what and how[J]. Chemical Society Reviews, 2013, 42(15): 6223-6235. |
62 | 姚稼灏,薛雅鞠,赵永亮,等. 多孔纳米材料固定化酶研究进展[J]. 微生物学通报, 2020, 47(7): 2177-2192. |
YAO J H, XUE Y J, ZHAO Y L, et al. Recent advances in immobilization of enzymes on porous nanomaterials[J]. Microbiology China, 2020, 47(7): 2177-2192. | |
63 | BILAL M, IQBAL H M N. Naturally-derived biopolymers: potential platforms for enzyme immobilization[J]. International Journal of Biological Macromolecules, 2019, 130: 462-482. |
64 | LIAN X Z, FANG Y, JOSEPH E, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401. |
65 | CUI C H, JEON B M, FU Y, et al. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7003-7015. |
66 | 于兆慧,刘其媛,崔莉,等. 蜗牛酶转化人参皂苷Rb1制备人参稀有皂苷Compound K的研究[J]. 中华中医药杂志, 2015, 30(2): 412-416. |
YU Z H, LIU Q Y, CUI L, et al. Study on the preparation of rare ginsenoside Compound K by enzymolysis of ginsenoside Rb1 with snailase[J].China Journal of Traditional Chinese Medicine and Pharmacy, 2015, 30(2): 412-416. | |
67 | DUAN Z G, ZHU C H, SHI J J, et al. High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1591-1597. |
68 | 于兆慧,刘其媛,崔莉,等. 微球固定化蜗牛酶转化人参皂苷Rb1 制备人参稀有皂苷Compound K研究[J]. 中草药, 2014, 45(21): 3092-3097. |
YU Z H, LIU Q Y, CUI L, et al. Transformation of rare ginsenoside Compound K from ginsenoside Rb1 catalyzed by snailase immobilization onto microspheres[J]. Chinese Traditional and Herbal Drugs, 2014, 45(21): 3092-3097. | |
69 | HASSAN M, RAN X K, YUAN Y, et al. Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads[J]. Bulletin of Materials Science, 2019, 42(1): 29-36. |
[1] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[2] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[3] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[4] | HUA Qucheng, DUAN Qinghua. Research progress of ionic liquid as extreme pressure and anti-wear agent [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 331-339. |
[5] | CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. |
[6] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[7] | SHAN Qingwen, ZHANG Juan, WANG Yajuan, LIU Wenqiang. Synthesis of polymeric ionic liquid and its performance on adsorption desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4571-4579. |
[8] | RUAN Jiawei, YE Xiangzhu, CHEN Lifang, QI Zhiwen. Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1176-1186. |
[9] | NI Qing, LAI Jinbo, PENG Dongyue, GUAN Cuishi, LONG Jun. Progress in extraction separation of hydrocarbons by ionic liquids [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627. |
[10] | LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052. |
[11] | CHEN Yaju, REN Qinggang, ZHOU Xiantai, JI Hongbing. Recent advances in porous organic polymers for the synthesis of cyclic carbonates from carbon dioxide [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3564-3583. |
[12] | BAI Ruibing, WANG Junfeng, WANG Daoguang, ZHANG Yanqiang. Research progress of ionic liquid-based extraction separation of lithium from brine [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3224-3238. |
[13] | LIU Zheng, LIU Ran, HUA Er, JI Jianlong. Water effects on physicochemical properties of protic ionic liquid with N-hexylamine as cation and bis(trifluoromethylsulfonyl) imide as anion [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2270-2277. |
[14] | ZHANG Wenlin, LIU Xuejiao, MA Qingcha, YANG Shuangcheng, ZHANG Yongkang, LI Chunli. Application of NCM electrolyte for nickel-rich lithium ion battery [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2175-2187. |
[15] | ZHAO Zhaoyang, LUO Xiaoyan, PEI Baoyou, XIANG Xiaoyan, LI Jiaran, MA Ruixun, ZHANG Ziheng, LIN Jinqing. Research progress on CO2 cycloaddition catalyzed by porous hyper-crosslinked polymers immobilized ionic liquids [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1438-1448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |