Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1226-1237.DOI: 10.16085/j.issn.1000-6613.2020-1906
• Special column:Green biomanufacturing • Previous Articles Next Articles
Received:
2020-09-19
Online:
2021-03-17
Published:
2021-03-05
Contact:
YE Bangce
通讯作者:
叶邦策
作者简介:
刘卫兵(1978—),男,博士,副教授,研究方向为合成生物学与微生物代谢调控。E-mail:基金资助:
CLC Number:
LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237.
刘卫兵, 叶邦策. 放线菌聚酮类化合物的合成生物学研究及生物制造[J]. 化工进展, 2021, 40(3): 1226-1237.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1906
1 | HERTWECK C. The biosynthetic logic of polyketide diversity[J]. Angewandte Chemie: International Edition, 2009, 48(26): 4688-4716. |
2 | MA S M, LI J W H, CHOI J W, et al. Complete reconstitution of a highly reducing iterative polyketide synthase[J]. Science, 2009, 326(5952): 589-592. |
3 | HLEBA L, CHAROUSOVA I, CISAROVA M, et al. Rapid identification of Streptomyces tetracycline producers by MALDI-TOF mass spectrometry[J]. Journal of Environmental Science and Health: Part A, 2018, 53(12): 1083-1093. |
4 | PARTHASARATHY R, SATHIYABAMA M. Lovastatin-producing endophytic fungus isolated from a medicinal plant Solanum xanthocarpum[J]. Natural Product Research, 2015, 29(24): 2282-2286. |
5 | HUANG Q, LU G, SHEN H M, et al. Anti-cancer properties of anthraquinones from rhubarb[J]. Medicinal Research Reviews, 2007, 27(5): 609-630. |
6 | PANKEWITZ F, HILKER M. Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis[J]. Biological Reviews, 2008, 83(2): 209-226. |
7 | KATSUYAMA Y, FUNA N, MIYAHISA I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli[J]. Chemistry & Biology, 2007, 14(6): 613-621. |
8 | CHOPRA I, ROBERTS M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232-260. |
9 | GHANNOUM M A, RICE L B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance[J]. Clinical Microbiology Reviews, 1999, 12(4): 501-517. |
10 | TACAR O, SRIAMORNSAK P, DASS C R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems[J]. Journal of Pharmacy and Pharmacology, 2013, 65(2): 157-170. |
11 | SHUSHNI M A, SINGH R, MENTEL R, et al. Balticolid: a new 12-membered macrolide with antiviral activity from an ascomycetous fungus of marine origin[J]. Marine Drugs, 2011, 9(5): 844-851. |
12 | LI J, KIM S G, BLENIS J. Rapamycin: one drug, many effects[J]. Cell Metabolism, 2014, 19(3): 373-379. |
13 | DE DONK N W VAN, KAMPHUIS M M, LOKHORST H M, et al. The cholesterol lowering drug lovastatin induces cell death in myeloma plasma cells[J]. Leukemia, 2002, 16(7): 1362-1371. |
14 | NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803. |
15 | GOMES E S, SCHUCH V, LEMOS E G D M. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics[J]. Brazilian Journal of Microbiology, 2013, 44(4): 1007-1034. |
78 | MARKHAM K A, PALMER C M, CHWATKO M, et al. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2096-2101. |
79 | TAN Z G, CLOMBURG J M, CHEONG S, et al. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones[J]. Nature Catalysis, 2020, 3(7): 593. |
80 | RISDIAN C, MOZEF T, WINK J. Biosynthesis of polyketides in Streptomyces[J]. Microorganisms, 2019, 7(5): 124. |
81 | LEADLAY P F. Combinatorial approaches to polyketide biosynthesis[J]. Curr. Opin. Chem. Biol., 1997, 1(2): 162-168. |
82 | XU Z, WANG M, YE B C. TetR family transcriptional regulator PccD negatively controls propionyl coenzyme A assimilation in Saccharopolyspora erythraea[J]. J. Bacteriol., 2017, 199(20): e00281. |
83 | XU J Y, XU Z, ZHOU Y, et al. Lysine malonylome may affect the central metabolism and erythromycin biosynthesis pathway in Saccharopolyspora erythraea[J]. J. Proteome. Res., 2016, 15(5): 1685-1701. |
84 | LYU M, CHENG Y, HAN X, et al. AccR, a TetR family transcriptional repressor, coordinates short-chain acyl coenzyme a homeostasis in Streptomyces avermitilis[J]. Appl. Environ. Microbiol., 2020, 86(12): e00508-e00520. |
85 | LU X, LIU X, CHEN Z, et al. The ROK-family regulator Rok7B7 directly controls carbon catabolite repression, antibiotic biosynthesis, and morphological development in Streptomyces avermitilis[J]. Environ. Microbiol., 2020, 22(12): 5090-5108. |
86 | ZHAO C, HUANG Y, GUO C, et al. Heterologous expression of spinosyn biosynthetic gene cluster in streptomyces species is dependent on the expression of rhamnose biosynthesis genes[J]. J. Mol. Microbiol. Biotechnol., 2017, 27(3): 190-198. |
87 | TAN G Y, DENG K, LIU X, et al. Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in streptomyces[J]. ACS Synth. Biol., 2017, 6(6): 995-1005. |
16 | CHENG S, LIU X, JIANG G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae[J]. ACS Synth. Biol., 2019, 8(5): 968-975. |
17 | ITOH H, MIURA A, MATSUI M, et al. Knockout of the SREBP system increases production of the polyketide FR901512 in filamentous fungal sp. No. 14919 and lovastatin in Aspergillus terreus ATCC20542[J]. Appl. Microbiol. Biotechnol., 2018, 102(3): 1393-1405. |
18 | XU Y, LI Y X, YE B C. Lysine propionylation modulates the transcriptional activity of phosphate regulator PhoP in Saccharopolyspora erythraea[J]. Mol. Microbiol., 2018, 110(4): 648-661. |
19 | QIN R, SANG Y, REN J, et al. The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp activity in Salmonella typhimurium[J]. Front Microbiol., 2016(7): 1864. |
20 | XU J Y, YOU D, LENG P Q, et al. Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine[J]. Journal of Biological Chemistry, 2014, 289(39): 27034-27045. |
21 | LIU X X, SHEN M J, LIU W B, et al. GlnR-mediated regulation of short-chain fatty acid assimilation in Mycobacterium smegmatis[J]. Frontiers in Microbiology, 2018, 9: 1311. |
22 | YU B J, KIM J A, MOON J H, et al. The diversity of lysine-acetylated proteins in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2008, 18(9): 1529. |
23 | WANG W, LI S, LI Z, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nature Biotechnology, 2020, 38(1): 76-83. |
24 | BIRCH A, DONOVAN F. Studies in relation to biosynthesis. Ⅰ. Some possible routes to derivatives of orcinol and phloroglucinol[J]. Australian Journal of Chemistry, 1953, 6(4): 360-368. |
25 | CORTES J, HAYDOCK S F, ROBERTS G A, et al. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea[J]. Nature, 1990, 348(6297): 176-178. |
26 | HOPWOOD D A, SHERMAN D H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis[J]. Annual Review of Genetics, 1990, 24(1): 37-66. |
27 | KATZ L, DONADIO S. Polyketide synthesis: prospects for hybrid antibiotics[J]. Annu. Rev. Microbiol., 1993, 47: 875-912. |
28 | CORTES J, HAYDOCK S F, ROBERTS G A, et al. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea[J]. Nature, 1990, 348(6297): 176-178. |
29 | DONADIO S, STAVER M J, MCALPINE J B, et al. Modular organization of genes required for complex polyketide biosynthesis[J]. Science, 1991, 252(5006): 675-679. |
30 | MALPARTIDA F, HOPWOOD D A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host[J]. Nature, 1984, 309(5967): 462-464. |
31 | MOTAMEDI H, HUTCHINSON C R. Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumor antibiotic of Streptomyces glaucescens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(13): 4445-4449. |
32 | FUNA N, OHNISHI Y, FUJII I, et al. A new pathway for polyketide synthesis in microorganisms[J]. Nature, 1999, 400(6747): 897-899. |
33 | IKEDA H, NONOMIYA T, USAMI M, et al. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(17): 9509-9514. |
34 | CHAN Y A, PODEVELS A M, KEVANY B M, et al. Biosynthesis of polyketide synthase extender units[J]. Nat. Prod. Rep., 2009, 26(1): 90-114. |
35 | LIM Y P, GO M K, YEW W S. Exploiting the biosynthetic potential of type Ⅲ polyketide synthases[J]. Molecules, 2016, 21(6): 806. |
36 | RAY L, MOORE B S. Recent advances in the biosynthesis of unusual polyketide synthase substrates[J]. Nat. Prod. Rep., 2016, 33(2): 150-161. |
37 | JESCHEK M, GERNGROSS D, PANKE S. Combinatorial pathway optimization for streamlined metabolic engineering[J]. Curr. Opin. Biotechnol., 2017, 47: 142-151. |
38 | LI S, SI T, WANG M, et al. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening[J]. ACS Synth. Biol., 2015, 4(12): 1308-1315. |
39 | PITERA D J, PADDON C J, NEWMAN J D, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli[J]. Metab. Eng., 2007, 9(2): 193-207. |
40 | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197. |
41 | LIM C G, FOWLER Z L, HUELLER T, et al. High-yield resveratrol production in engineered Escherichia coli[J]. Appl. Environ. Microbiol., 2011, 77(10): 3451-3460. |
42 | SANTOS C N, KOFFAS M, STEPHANOPOULOS G. Optimization of a heterologous pathway for the production of flavonoids from glucose[J]. Metab. Eng., 2011, 13(4): 392-400. |
43 | SUMMEREN-WESENHAGEN P V VAN, MARIENHAGEN J. Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin[J]. Appl. Environ. Microbiol., 2015, 81(3): 840-849. |
44 | KALLSCHEUER N, VOGT M, STENZEL A, et al. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones[J]. Metab. Eng., 2016, 38: 47-55. |
45 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
46 | MILKE L, MARIENHAGEN J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis[J]. Appl. Microbiol. Biotechnol., 2020, 104(14): 6057-6065. |
47 | MILKE L, KALLSCHEUER N, KAPPELMANN J, et al. Tailoring Corynebacterium glutamicum towards increased malonyl-CoA availability for efficient synthesis of the plant pentaketide noreugenin[J]. Microb. Cell. Fact., 2019, 18(1): 71. |
48 | BRUSSELER C, RADEK A, TENHAEF N, et al. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum[J]. Bioresour. Technol., 2018, 249: 953-961. |
49 | KALLSCHEUER N, MARIENHAGEN J. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids[J]. Microbial Cell Factories, 2018, 17(1): 70. |
50 | XU J Y, XU Y, XU Z, et al. Protein acylation is a general regulatory mechanism in biosynthetic pathway of acyl-CoA-derived natural products[J]. Cell Chemical Biology, 2018, 25(8): 984-995. |
51 | YOU D, WANG M M, YIN B C, et al. Precursor supply for erythromycin biosynthesis: engineering of propionate assimilation pathway based on propionylation modification[J]. ACS Synthetic Biology, 2019, 8(2): 371-380. |
52 | LIU Q, XIAO L, ZHOU Y, et al. Development of Streptomyces sp. FR-008 as an emerging chassis[J]. Synth. Syst. Biotechnol., 2016, 1(3): 207-214. |
53 | BU Q T, YU P, WANG J, et al. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches[J]. Microbial Cell Factories, 2019, 18(1): 1-17. |
54 | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3): 233-239. |
55 | LIU R, DENG Z, LIU T. Streptomyces species: ideal chassis for natural product discovery and overproduction[J]. Metab. Eng., 2018, 50: 74-84. |
56 | ZHANG M M, WONG F T, WANG Y, et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13(6): 607-609. |
57 | LIU Y, REN C Y, WEI W P, et al. A CRISPR-Cas9 strategy for activating the Saccharopolyspora erythraea erythromycin biosynthetic gene cluster with knock-in bidirectional promoters[J]. ACS Synth. Biol., 2019, 8(5): 1134-1143. |
58 | LIU Y, WEI W P, YE B C. High GC content Cas9-mediated genome-editing and biosynthetic gene cluster activation in Saccharopolyspora erythraea[J]. ACS Synthetic Biology, 2018, 7(5): 1338-1348. |
59 | TONG Y J, WHITFORD C M, BLIN K, et al. CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes[J]. Nat. Protoc., 2020, 15(8): 2470-2502. |
60 | COBB R E, WANG Y J, ZHAO H M. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6): 723-728. |
61 | LIANG M D, LIU L, WANG W, et al. Simple cloning of large natural product biosynthetic gene cluster by CRISPR/Cas12a-mediated fast direct capturing strategy[J]. BioRxiv, DOI: https//doi.org/10.1101/2020.06.25.170191. |
62 | KALLIFIDAS D, JIANG G, DING Y, et al. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters[J]. Microbial Cell Factories, 2018, 17(1): 25. |
63 | YOU D, ZHANG B Q, YE B C. GntR family regulator DasR controls acetate assimilation by directly repressing the acsA gene in Saccharopolyspora erythraea[J]. Journal of Bacteriology, 2018, 200(13):e00685. |
64 | LIAO C H, XU Y, RIGALI S, et al. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea[J]. Appl. Microbiol. Biotechnol., 2015, 99(23): 10215-10224. |
65 | LIAO C H, YAO L L, YE B C. Three genes encoding citrate synthases in Saccharopolyspora erythraea are regulated by the global nutrient-sensing regulators GlnR, DasR, and CRP[J]. Molecular Microbiology, 2014, 94(5): 1065-1084. |
66 | YOU D, WANG M M, YE B C. Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels[J]. Molecular Microbiology, 2017, 103(5): 845-859. |
67 | XU Y, LIAO C H, YAO L L, et al. GlnR and PhoP directly regulate the transcription of genes encoding starch-degrading, amylolytic enzymes in Saccharopolyspora erythraea[J]. Appl. Environ. Microbiol., 2016, 82(23): 6819-6830. |
68 | YAO L L, YE B C. Reciprocal regulation of GlnR and PhoP in response to nitrogen and phosphate limitations in Saccharopolyspora erythraea[J]. Appl. Environ. Microbiol., 2016, 82(1): 409-420. |
69 | YAO L L, LIAO C H, HUANG G, et al. GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea[J]. Appl. Microbiol. Biotechnol., 2014, 98(18): 7935-7948. |
70 | LIAO C H, YAO L, XU Y, et al. Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15630-15635. |
71 | XU Y, YOU D, YAO L L, et al. Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea[J]. Microb. Cell Fact., 2019, 18(1): 206. |
72 | MARTIN J F, RODRIGUEZ-GARCIA A, LIRAS P. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis[J]. Journal of Antibiotics, 2017, 70(5): 534-541. |
73 | YANG R, LIU X, WEN Y, et al. The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis[J]. Appl. Microbiol. Biotechnol., 2015, 99(24): 10547-10557. |
74 | LIU H, MARSAFARI M, WANG F, et al. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica[J]. Metabolic Engineering, 2019, 56: 60-68. |
75 | TANG S Y, QIAN S, AKINTERINWA O, et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter[J]. J. Am .Chem. Soc., 2013, 135(27): 10099-10103. |
76 | CARDENAS J, SILVA N A DA. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone[J]. Metab. Eng., 2014, 25: 194-203. |
77 | LI Y, QIAN S A, DUNN R, et al. Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(9): 789-793. |
[1] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[2] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[3] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[4] | SONG Wangyi, ZHAO Xinfang, LIU Wei, XUE Ling. Effect of valve hardening process on hydrogen peroxide production by anthraquinone process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 54-59. |
[5] | ZHANG Fan, WANG Shuzhong, LI Yanhui, YANG Jianqiao, SUN Shenghan. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. |
[6] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[7] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[8] | WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201. |
[9] | SUN Wentao, LI Chun. Design and construction of microbial cell factory for biosynthesis of plant natural products [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1202-1214. |
[10] | MA Yueyuan, CHEN Jinchun, CHEN Guoqiang. Halophilic microorganisms as microbial chassis: applications and prospects [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. |
[11] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[12] | Chen WANG, Meng ZHAO, Mingzhu DING, Ying WANG, Mingdong YAO, Wenhai XIAO. Application of biological scaffold system on synthetic biology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4557-4567. |
[13] | Zuming YANG, Ying WANG, Mingdong YAO, Wenhai XIAO. High-throughput screening technology in strain evolution [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2402-2412. |
[14] | Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605. |
[15] | YANG Kun, WANG Ying, LI Chun. Cell transporter protein and engineered applications [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1410-1417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |