Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6246-6253.DOI: 10.16085/j.issn.1000-6613.2020-2265
• Materials science and technology • Previous Articles Next Articles
LIU Wendong(), ZHANG Chenghui, CHEN Chuanxia, NI Pengjuan, JIANG Yuanyuan, WANG Bo, LU Yizhong()
Received:
2020-11-12
Revised:
2021-01-07
Online:
2021-11-19
Published:
2021-11-05
Contact:
LU Yizhong
刘文栋(), 张成会, 陈传霞, 倪朋娟, 姜媛媛, 王波, 逯一中()
通讯作者:
逯一中
作者简介:
刘文栋(1993—),男,硕士研究生,研究方向为电化学。E-mail:基金资助:
CLC Number:
LIU Wendong, ZHANG Chenghui, CHEN Chuanxia, NI Pengjuan, JIANG Yuanyuan, WANG Bo, LU Yizhong. Engineering ultrathin PdCu nanosheets-composed nanoflowers with high catalytic activity for oxygen reduction reaction[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6246-6253.
刘文栋, 张成会, 陈传霞, 倪朋娟, 姜媛媛, 王波, 逯一中. 超薄钯铜纳米片组装纳米花的构建及其氧还原性能[J]. 化工进展, 2021, 40(11): 6246-6253.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2265
实验材料与试剂 | 参数 | 商家 |
---|---|---|
Na2PdCl4 | 98% | 阿拉丁 |
CuCl2·2H2O | 99.99% | Sigma-Aldrich |
W(CO)6 | 97% | Sigma-Aldrich |
N,N-二甲基甲酰胺(DMF) | 分析纯 | Sigma-Aldrich |
乙酸 | 97% | 阿拉丁 |
Nafion | 5% | 阿拉丁 |
Vulcan XC-72(导电炭黑) | — | 美国卡博特公司 |
无水乙醇 | 分析纯 | Sigma-Aldrich |
异丙醇 | 分析纯 | Sigma-Aldrich |
商业Pt/C | 20% | Sigma-Aldrich |
氢氧化钾 | 分析纯 | 阿拉丁 |
实验材料与试剂 | 参数 | 商家 |
---|---|---|
Na2PdCl4 | 98% | 阿拉丁 |
CuCl2·2H2O | 99.99% | Sigma-Aldrich |
W(CO)6 | 97% | Sigma-Aldrich |
N,N-二甲基甲酰胺(DMF) | 分析纯 | Sigma-Aldrich |
乙酸 | 97% | 阿拉丁 |
Nafion | 5% | 阿拉丁 |
Vulcan XC-72(导电炭黑) | — | 美国卡博特公司 |
无水乙醇 | 分析纯 | Sigma-Aldrich |
异丙醇 | 分析纯 | Sigma-Aldrich |
商业Pt/C | 20% | Sigma-Aldrich |
氢氧化钾 | 分析纯 | 阿拉丁 |
催化剂 | 半波电位(E1/2)/V | 质量活性/A·mg-1 | 参考文献 |
---|---|---|---|
Pd6Ni | 0.89 | 0.22 | [ |
B-Pd | — | 0.97 | [ |
PdMo | 0.95 | 16.37 | [ |
Pd/W18O49 | 0.875 | 0.216 | [ |
PdAuCu | — | 1.781 | [ |
Pd-Cu | 0.90 | 0.59 | [ |
Pd2FeCo@Pt | 0.880 | 2.5 | [ |
Pd@PdFe | — | 0.31 | [ |
Pd1Cu0.5 NCFs | 0.937 | 1.09 | 本工作 |
催化剂 | 半波电位(E1/2)/V | 质量活性/A·mg-1 | 参考文献 |
---|---|---|---|
Pd6Ni | 0.89 | 0.22 | [ |
B-Pd | — | 0.97 | [ |
PdMo | 0.95 | 16.37 | [ |
Pd/W18O49 | 0.875 | 0.216 | [ |
PdAuCu | — | 1.781 | [ |
Pd-Cu | 0.90 | 0.59 | [ |
Pd2FeCo@Pt | 0.880 | 2.5 | [ |
Pd@PdFe | — | 0.31 | [ |
Pd1Cu0.5 NCFs | 0.937 | 1.09 | 本工作 |
1 | WINTER Martin, BRODD Ralph J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4270. |
2 | HUANG Hongwen, LI Kan, CHEN Zhao, et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires[J]. Journal of the American Chemical Society, 2017, 139 (24): 8152-8159. |
3 | STAMENKOVIC Vojislav R, FOWLER Ben, Bongjin Simon MUN, et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
4 | CHEN Chen, KANG Yijin, HUO Ziyang, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339. |
5 | GUO Shaojun, ZHANG Xu, ZHU Wenlei, et al. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(42): 15026-15033. |
6 | XIA Bao Yu, YAN Ya, LI Nan, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nature Energy, 2016, 1(1): 15006. |
7 | GAO Dunfeng, ZHOU Hu, WANG Jing, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. |
8 | GAO Dunfeng, ZHOU Hu, CAI Fan, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles[J]. Nano Research, 2017, 10(6): 2181-2191. |
9 | ANDREADIS George, SONG Shuqin, TSIAKARAS Panagiotis. Direct ethanol fuel cell anode simulation model[J]. Journal of Power Sources, 2006, 157(2): 657-665. |
10 | SHAO Minhua, LIU Ping, ZHANG Junliang, et al. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction[J]. The Journal of Physical Chemistry B, 2007, 111(24): 6772-6775. |
11 | SHAO Minhua, SASAKI Kotaro, ADZIC Radoslav R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2006, 128(11): 3526-3527. |
12 | HE Chunyong, TAO Juzhou, SHEN Peikang. Solid synthesis of ultrathin palladium and its alloys’ nanosheets on rGO with high catalytic activity for oxygen reduction reaction[J]. ACS Catalysis, 2018, 8(2): 910-919. |
13 | GUNJI Takao, Seung Hyo NOH, ANDO Fuma, et al. Electrocatalytic activity of electrochemically dealloyed PdCu3 intermetallic compound towards oxygen reduction reaction in acidic media[J]. Journal of Materials Chemistry A, 2018, 6(30): 14828-14837. |
14 | JIANG Guangming, ZHU Huiyuan, ZHANG Xu, et al. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction[J]. ACS Nano, 2015, 9(11): 11014-11022. |
15 | CHEN Luyang, GUO Hai, FUJITA Takeshi, et al. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions[J]. Advanced Functional Materials, 2011, 21(22): 4364-4370. |
16 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. |
17 | ZHAO Xiaojing, DAI Lei, QIN Qing, et al. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol[J]. Small, 2017, 13(12): 1602970. |
18 | AN Hongming, ZHAO Zhiliang, ZHANG Lianying, et al. Ir-alloyed ultrathin ternary PdIrCu nanosheet-constructed flower with greatly enhanced catalytic performance toward formic acid electrooxidation[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41293-41298. |
19 | SHANG Hongyuan, XU Hui, LIU Qingyun, et al. PdCu alloy nanosheets-constructed 3D flowers: new highly sensitive materials for H2S detection[J]. Sensors and Actuators B: Chemical, 2019, 289: 260-268. |
20 | LU Yizhong, WANG Jiong, PENG Yuecheng, et al. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction[J]. Advanced Energy Materials, 2017, 7(21): 1700919. |
21 | ZHAO Zipeng, HUANG Xiaoqing, LI Mufan, et al. Synthesis of stable shape-controlled catalytically active β-palladium hydride[J]. Journal of the American Chemical Society, 2015, 137(50): 15672-15675. |
22 | GU Zhulan, XIONG Zhiping, REN Fangfang, et al. Flower-like PdCu catalyst with high electrocatalytic properties for ethylene glycol oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83: 32-39. |
23 | HU Chuangang, ZHAI Xiangquan, ZHAO Yang, et al. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation[J]. Nanoscale, 2014, 6(5): 2768-2775. |
24 | XU Hui, YAN Bo, ZHANG Ke, et al. Sub-5nm monodispersed PdCu nanosphere with enhanced catalytic activity towards ethylene glycol electrooxidation[J]. Electrochimica Acta, 2018, 261: 521-529. |
25 | ZHANG Qianli, ZHENG Jiening, XU Tianqi, et al. Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation[J]. Electrochimica Acta, 2014, 132: 551-560. |
26 | MOHANTY Ashok, GARG Niti, JIN Rongchao. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties[J]. Angewandte Chemie International Edition, 2010, 49(29): 4962-4966. |
27 | LU Yizhong, JIANG Yuanyuan, CHEN Wei. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation[J]. Nanoscale, 2014, 6(6): 3309-3315. |
28 | LU Yizhong, CHEN Wei. PdAg alloy nanowires: facile one-step synthesis and high electrocatalytic activity for formic acid oxidation[J]. ACS Catalysis, 2012, 2(1): 84-90. |
29 | TAO Hua Bing, ZHANG Junming, CHEN Jiazang, et al. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis[J]. Journal of the American Chemical Society, 2019, 141(35): 13803-13811. |
30 | FENG Yonggang, SHAO Qi, JI Yujin, et al. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts[J]. Science Advances, 2018, 4(7): eaap8817. |
31 | LI Jun, CHEN Junxiang, WANG Qiang, et al. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium[J]. Chemistry of Materials, 2017, 29(23): 10060-10067. |
32 | LUO Mingchuan, ZHAO Zhonglong, ZHANG Yelong, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85. |
33 | LU Yizhong, JIANG Yuanyuan, GAO Xiaohui, et al. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts[J]. Journal of the American Chemical Society, 2014, 136(33): 11687-11697. |
34 | WANG Gongwei, GUAN Jianxin, XIAO Li, et al. Pd skin on AuCu intermetallic nanoparticles: a highly active electrocatalyst for oxygen reduction reaction in alkaline media[J]. Nano Energy, 2016, 29: 268-274. |
35 | PENG Xiong, OMASTA Travis J, ROLLER Justin M, et al. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Frontiers in Energy, 2017, 11(3): 299-309. |
36 | XIAO Weiping, LIUTHEVICIENE Cordeiro Marco Aurelio, GONG Mingxing, et al. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size[J]. Journal of Materials Chemistry A, 2017, 5(20): 9867-9872. |
37 | LI Xu, LI Xingxing, LIU Chunxiao, et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis[J]. Nano Letters, 2020, 20(2): 1403-1409. |
38 | YAN Dafeng, LI Yunxiao, HUO Jia, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459. |
39 | JIANG Yuanyuan, DONG Kai, YAN Xiaoying, et al. Metal-polydopamine framework-derived (Co)/N-doped carbon hollow nanocubes as efficient oxygen electrocatalysts[J]. Sustainable Energy & Fuels, 2020, 4(7): 3370-3377. |
40 | LIANG Yongye, LI Yanguang, WANG Hailiang, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786. |
41 | GARSANY Yannick, BATURINA Olga A, SWIDER-LYONS Karen E, et al. Experimental methods for quantifying the activity of platinum electrocat alysts for the oxygen reduction reaction[J]. Analytical Chemistry, 2010, 82 (15): 6321-6328. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[7] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[8] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[9] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |