Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5523-5534.DOI: 10.16085/j.issn.1000-6613.2021-0763
• Industrial catalysis • Previous Articles Next Articles
WANG Chunxia(), SONG Zhaoyi, NI Jiping, PAN Zongwei, HUANG Guoyong()
Received:
2021-04-13
Revised:
2021-06-15
Online:
2021-10-25
Published:
2021-10-10
Contact:
HUANG Guoyong
通讯作者:
黄国勇
作者简介:
王春霞(1984—),女,副教授,硕士生导师,研究方向为纳米材料电催化。E-mail:基金资助:
CLC Number:
WANG Chunxia, SONG Zhaoyi, NI Jiping, PAN Zongwei, HUANG Guoyong. Progress of electrocatalytic hydrogen evolution reaction catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5523-5534.
王春霞, 宋兆毅, 倪基平, 潘宗卫, 黄国勇. 电催化析氢催化剂研究进展[J]. 化工进展, 2021, 40(10): 5523-5534.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0763
1 | 李莎莎. 钴基电催化剂的结构设计、合成及其电催化性能[D]. 太原: 太原理工大学, 2019. |
LI S S. Design, synthesis and electrocatalytic properties of cobalt based electrocatalysts[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
2 | YU P, WANG F M, SHIFA T A, et al. Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019, 58: 244-276. |
3 | LAURSEN A B, KEGNAES S, DAHL S, et al. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5(2): 5577-5591. |
4 | 吴新勇. 镍基电催化剂的制备及析氢性能研究[D]. 深圳: 深圳大学, 2017. |
WU X Y. Preparation of nickel-based electrocatalyst and study on its hydrogen evolution performance[D]. Shenzhen: Shenzhen University, 2017. | |
5 | PARSONS R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen[J]. Transactions of the Faraday Society, 1958, 54:1603-1611. |
6 | JARAMILLO T F, JORGENSEN K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317 (5834): 100-102. |
7 | FRYXELL R E, NACHTRIEB N H. Effect of stress on metal electrode potentials[J]. Journal of the Electrochemical Society, 1952, 99(12): 495-503. |
8 | FLETCHER S. Tafel slopes from first principles[J]. Journal of Solid State Electrochemistry, 2009, 13(4): 537-549. |
9 | WANG E. Electrochemical scanning tunneling microscopy[J]. Analyticalences, 1994, 10(1): 155-156. |
10 | 景锋. 镍基硫属自支撑电极的制备及其电解水析氢性能的研究[D]. 武汉: 华中科技大学, 2019. |
JING F. Research on hydrogen evolution performances of nickel-based chalcogenides self-supported electrodes[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
11 | DE ROOIJ M R. Electrochemical methods: fundamentals and applications[J]. Anti-Corrosion Methods and Materials, 2003, 50(5).DOI: 10.1108/acmm.2003.12850eae.001. |
12 | BENCK J D, HELLSTERN T R, KIBSGAARD J, et al. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials[J]. ACS Catalysis, 2016, 4(11): 3957-3971. |
13 | ZHU J, HU L S, ZHAO P X, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918. |
14 | HINNEMANN B, MOSES P G, BONDE J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309. |
15 | LI H X, HUANG M, CAO G Y. Markedly different adsorption behaviors of gas molecules on defective monolayer MoS2: a first-principles study[J]. Physical Chemistry Chemical Physics, 2016, 18(22): 15110-15117. |
16 | TSAI C, LI H, PARK S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution[J]. Nature Communications, 2017, 8(1):15113. |
17 | ER D Q, YE H, FREY N C, et al. Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides[J]. Nano Letters, 2018, 18(6): 3943-3949. |
18 | TRAN P D, GOFF A L, HEIDKAMP J, et al. Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake[J]. Angewandte Chemie International Edition, 2010, 123(6): 1407-1410 |
19 | ZHU C B, MU X K, YU Y, et al. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage[J]. Angewandte Chemie International Edition, 2014, 126: 2184-2188. |
20 | GUO Y X, ZHANG X Y, ZHANG X P, et al. Defect-and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3 (31): 15927-15934. |
21 | LI C G, YAN H G, BRUS L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700. |
22 | WANG H L, ROBINSON J T, DIANKOV G, et al. Nanocrystal growth on graphene with various degrees of oxidation[J]. Journal of the American Chemical Society, 2010, 132(10): 3270-3271. |
23 | GUO Y X, GAN L F, SHANG C S, et al. A cake-style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(5): 1-7. |
24 | LI L, QIN Z D, RIES L, et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets towards the evolution of hydrogen[J]. ACS Nano, 2019, 13(6): 6824-6834. |
25 | YANG W W, ZHANG S Q, CHEN Q, et al. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity[J]. Advanced Materials, 2020, 32(30): 2001167. |
26 | SHI Y, ZHOU Y, YANG D R, et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(43): 15479-15485. |
27 | LIU Y, KELLY T G, CHEN J G, et al. Metal carbides as alternative electrocatalyst supports[J]. ACS Catalysis, 2013, 3(6): 1184-1194. |
28 | DONG J H, HAN S, PAK C, et al. High electrochemical performance and stability of co-deposited Pd-Au on phase-pure tungsten carbide for hydrogen oxidation[J]. Topics in Catalysis, 2012, 55: 922-930. |
29 | CHEN Z G, GONG W B, CONG S, et al. Eutectoid-structured WC/W2C heterostructures: a new platform for long-term alkaline hydrogen evolution reaction at low overpotentials[J]. Nano Energy, 2019, 68: 104335. |
30 | GAO Q S, ZHANG W B, SHI Z P, et al. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution[J]. Advanced Materials, 2018, 31(2): 1802880. |
31 | YANG C F, ZHAO R, XIANG H, et al. Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions[J]. Advanced Energy Materials, 2020, 10(37): 2002260. |
32 | LIN Q, SHANG C Q, CHEN Z H, et al. Boron-doped molybdenum carbide as a pH-independent electrocatalyst for the hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30659-30665. |
33 | ZHAO D, SUN K A, CHEONG W C, et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angewandte Chemie International Edition, 2020, 59(23): 8982-8990. |
34 | LI X L, ZHANG J L, ZHANG Y, et al. Copper induced phosphide for enhanced electrochemical hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45: 21422-21430. |
35 | JIAO Y, ZHENG Y, DAVEY K, et al. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped grapheme[J]. Nature Energy, 2016, 1: 16130. |
36 | DAI L M, XUE Y H, QU L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892. |
37 | 高彩艳. 金属基复合催化剂的制备及电解水性能研究[D]. 郑州: 郑州大学, 2020. |
GAO C Y. Preparation of metal based composite catalysts and study on electrocatalytic properties[D]. Zhengzhou: Zhengzhou University, 2020. | |
38 | ZHANG J T, DAI L M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction[J]. ACS Catalysis, 2015, 5(12): 21-28. |
39 | VIJAYARAGHAVAN G, STEVENSON K J. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction[J]. Langmuir, 2007, 23(10):5279-5282. |
40 | LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. |
41 | VAZQUEZ-ARENAS J, HIGGINS D, ZHU C, et al. Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction[J]. Journal of Power Sources, 2012, 205(1): 215-221. |
42 | 周思了. 两种功能化碳材料的电催化析氢性能研究[D]. 芜湖: 安徽师范大学, 2017. |
ZHOU S L. Study on the electrocatalytic hydrogen evolution performance of two functional carbon materials[D]. Wuhu: Anhui Normal University, 2017. | |
43 | ZHENG Y, JIAO Y, ZHU Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5(4): 3783-3791. |
44 | GUO D H, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365. |
45 | LI T H, TANG T M, CUI Z H, et al. Functionalized carbon nanotubes for highly active and metal-free electrocatalysts in hydrogen evolution reaction[J]. Electrocatalysis, 2018, 9: 573-581. |
46 | QU K G, ZHENG Y, JIAO Y, et al. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting[J]. Advanced Energy Materials, 2017, 7(9): 160-168. |
47 | LI T H, CHEN Y P, HU W H, et al. Ionic liquid in situ functionalized carbon nanotubes as metal-free catalyst for efficient electrocatalytic hydrogen evolution reaction[J]. Nanoscale, 2021, 13: 4444-4450. |
48 | ITO D Y, CONG W, FU D T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 51(7): 2131-2136. |
49 | ZHAO Z H, XIA Z H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions[J]. ACS Catalysis, 2016, 6(3): 1553-1558. |
50 | XING T, ZHENG Y, LI L H, et al. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer grapheme[J]. ACS Nano, 2014, 8(7): 6856-6862. |
51 | WANG H, LI X B, GAO L, et al. Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 130(1): 198-203. |
52 | HOLMBERG N, LAASONEN K. Theoretical insight into the hydrogen evolution activity of open-ended carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3956-3960. |
53 | YUE X, HUANG S L, CAI J J, et al. Heteroatoms dual doped porous graphene nanosheets as efficient bifunctional metal-free electrocatalysts for overall water-splitting[J]. Journal of Materials Chemistry A, 2017, 5(17): 7784-7790. |
54 | CHHETRI M, MAITRA S, CHAKRABORTY H, et al. Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction[J]. Energy Environ. Sci., 2016, 9(1): 95-101. |
55 | DONG G, ZHANG Y, PAN Q, et al. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties[J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2014, 20: 33-50. |
56 | SHALOM M, GIMENEZ S, SCHIPPER F, et al. Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes[J]. Angew. Chem. Int. Ed., 2014, 53(14): 3654-3658. |
57 | PEI, Z X, ZHAO J X, HUANG Y, et al. Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping[J]. Journal of Materials Chemistry A, 2016, 4(31): 12205-12211. |
58 | QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3 (8): 634-641. |
59 | WANG A Q, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018, 2 (6): 65-81. |
60 | KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335 (6073): 1209-1212. |
61 | LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118 (10): 4981-5079. |
62 | LIU J Y, XU J, QIAO B T, et al. Catalysis by supported single metal atoms[J]. ACS Catalysis, 2016, 7 (1): 34-59. |
63 | JONES J, XIONG H F, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. |
64 | HUANG Y B, LIANG J, WANG X S, et al. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions[J]. Chemical Society Reviews, 2017, 46 (1): 126-157. |
65 | CHEN Y J, JI S F, WANG Y G, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2017, 56(24): 6937-6941. |
66 | ZHENG T T, JIANG K, TA N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3 (1): 265-278. |
67 | PENG Y, PAN W Z, WANG N, et al. Ruthenium ion-complexed graphitic carbon nitride nanosheets supported on reduced graphene oxide as high-performance catalysts for electrochemical hydrogen evolution[J]. ChemSusChem, 2018, 11 (1): 130-136. |
68 | PENG Y, LU B Z, CHEN L M, et al. Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets[J]. Journal of Materials Chemistry A, 2017, 5(34): 18261-18269. |
69 | LU B Z, GUO L, WU F, et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media[J]. Nature Communications, 2019, 10(1): 631-642. |
70 | FEI H L, DONG J C, FENG Y X, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis, 2018, 1(1): 63-72. |
71 | YIN X P, WANG H J, TANG S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57(30): 9382-9386. |
72 | ZHOU K L, WANG C H, WANG Z L, et al. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction[J]. Energy & Environmental Science, 2020, 13(9): 3082-3092. |
73 | LIU D B, LI X Y, CHEN S M, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4 (6): 512-518. |
74 | SHI Y, MA Z R, XIAO Y Y, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction[J]. Nature Communications, 2021, 12: 3021-3032. |
75 | SONG H Q, WU M, TANG Z Y, et al. Single atom Ru doped CoP/CDs nanosheets via splicing of carbon dots for robust hydrogen production[J]. Angewandte Chemie International Edition, 2021, 60(13): 7234-7244. |
76 | ZHANG J M, XU X P, YANG L, et al. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction[J]. Small Methods, 2019, 3 (12): 1900653. |
77 | YANG J, CHEN B X, LIU W, et al. Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites[J]. Angewandte Chemie International Edition, 2018, 57 (30): 9495-9500. |
78 | FEI H L, DONG J C, ARELLANO-JIMENEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6: 8668-8676. |
79 | SULTAN S, TIWARI J N, SINGH A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Advanced Energy Materials, 2019, 9(22): 1900624.1-1900624.48. |
80 | ZHANG L Z, JIA Y, GAO G P, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions[J]. Chem., 2018, 4(2): 285-297. |
81 | LIANG L H, JIN H H, ZHOU H, et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media[J]. Nano Energy, 2021, 88: 106221. |
[1] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[2] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[3] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
[4] | WANG Yanan, MENG Xiuxia, ZHANG Weimin, YANG Naitao. Recent advances of surficial/interfacial modulation strategies for the electrodes in hydrogen/oxygen reactions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2416-2428. |
[5] | GE Rui, HU Xu, DONG Lingyu, LI Dan, HAO Guangping. Electrochemical coupling between cathodic carbon dioxide reduction and anodic oxidation synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5132-5144. |
[6] | WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695. |
[7] | ZHANG Ting, SUN Xiaohong, YU Hongbing, DONG Heng. Research progress of inhibiting hydrogen evolution in electro-catalytic ammonia synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6670-6687. |
[8] | Zexue DU. Application advances of manufacturing technology for key materials of vehicle fuel cell stack [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. |
[9] | Gang LI,Suisui ZHANG,Nina ZHANG,Ting GAO,Tingwei LAN,Xiaoxun MA. Regulation of Shendong coal pyrolysis products based on MeMo/USY catalyst [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1329-1337. |
[10] | Peican WANG, Qing LEI, Shuai LIU, Baoguo WANG. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 278-291. |
[11] | ZHANG Suisui, LI Gang, MIN Xiaojian, ZHENG Hua'an, FAN Yingjie, ZHANG Nina, AN Pu, MA Xiaoxun. Regulation of the rapid pyrolysis products of Shendong coal by MxOy/USY bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3029-3037. |
[12] | HONG Weichen, MA Hongyun, ZHAO Hongbo, WANG Baoguo. A critical review of zinc air battery: present status and perspective [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1713-1722. |
[13] | ZHANG Xinrong,ZHANG Jianqin,ZHU Rongjie,SUN Yi,ZHANG Wei,LIU Xiang. Bifunctional electrocatalyst of oxygen electrode for PEM unitized regenerative fuel cell [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2896-2900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |