Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2416-2428.DOI: 10.16085/j.issn.1000-6613.2021-1145
• Industrial catalysis • Previous Articles Next Articles
WANG Yanan(), MENG Xiuxia, ZHANG Weimin(), YANG Naitao()
Received:
2021-05-31
Revised:
2021-07-17
Online:
2022-05-24
Published:
2022-05-05
Contact:
ZHANG Weimin,YANG Naitao
通讯作者:
张维民,杨乃涛
作者简介:
王亚楠(1994—),女,博士研究生,研究方向为电催化。E-mail:基金资助:
CLC Number:
WANG Yanan, MENG Xiuxia, ZHANG Weimin, YANG Naitao. Recent advances of surficial/interfacial modulation strategies for the electrodes in hydrogen/oxygen reactions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2416-2428.
王亚楠, 孟秀霞, 张维民, 杨乃涛. 表/界面调控策略在氢/氧反应电极中的研究进展[J]. 化工进展, 2022, 41(5): 2416-2428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1145
1 | ZHU Y P, GUO C, ZHENG Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research, 2017, 50(4): 915-923. |
2 | ZHAO H, YUAN Z Y. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions[J]. Journal of Energy Chemistry, 2021, 54: 89-104. |
3 | WANG J, KONG H, ZHANG J Y, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science, 2021, 116: 100717. |
4 | SHIT S, BOLAR S, MURMU N C, et al. An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts[J]. Journal of Energy Chemistry, 2021, 59: 160-190. |
5 | WANG C M, BAI S, XIONG Y J. Recent advances in surface and interface engineering for electrocatalysis[J]. Chinese Journal of Catalysis, 2015, 36(9): 1476-1493. |
6 | SHI F, ZHU X F, YANG W S. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries[J]. Chinese Journal of Catalysis, 2020, 41(3): 390-403. |
7 | YU P, WANG F M, SHIFA T A, et al. Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019, 58: 244-276. |
8 | BOCKRIS J O, POTTER E C. The mechanism of the cathodic hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 1952, 99(4): 169. |
9 | TRASATTI S, PETRII O A. Real surface area measurements in electrochemistry[J]. Journal of Electroanalytical Chemistry, 1992, 327(1/2): 353-376. |
10 | ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
11 | ZHENG Y, JIAO Y, JARONIEC M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angewandte Chemie International Edition, 2015, 54(1): 52-65. |
12 | NOERSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution[J]. ChemInform, 2005, 36(24):e12154. |
86 | FU G T, CHEN Y F, CUI Z M, et al. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes[J]. Nano Letters, 2016, 16(10): 6516-6522. |
87 | YAO M Q, WANG B J, SUN B L, et al. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2021, 280: 119451. |
88 | HAN J X, BAO H L, WANG J Q, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Applied Catalysis B: Environmental, 2021, 280: 119411. |
89 | KHIARAK B N, HASANZADEH M, SIMCHI A. Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks[J]. Inorganic Chemistry Communications, 2021, 127: 108525. |
90 | KUMAR P, MURTHY A P, BEZERRA L S, et al. Carbon supported nickel phosphide as efficient electrocatalyst for hydrogen and oxygen evolution reactions[J]. International Journal of Hydrogen Energy, 2021, 46(1): 622-632. |
91 | YANG Y, ZHOU M, GUO W L, et al. NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation[J]. Electrochimica Acta, 2015, 174: 246-253. |
92 | HE T, HE Y, LI H J, et al. Mo2C nanospheres anchored on nickel foam as self-supported electrode for high-performance hydrogen production[J]. Journal of Solid State Chemistry, 2021, 294: 121825. |
93 | PU Z H, LIU Q, ASIRI A M, et al. Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 21874-21879. |
94 | PENG Y, CHEN S W. Electrocatalysts based on metal@carbon core@shell nanocomposites: an overview[J]. Green Energy & Environment, 2018, 3(4): 335-351. |
95 | PEI W, ZHOU S, BAI Y Z, et al. N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: understanding the synergistic effect from atomistic level[J]. Carbon, 2018, 133: 260-266. |
96 | WANG Z J, LU Y Z, YAN Y, et al. Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst[J]. Nano Energy, 2016, 30: 368-378. |
97 | NAJAFI L, BELLANI S, OROPESA-NUÑEZ R, et al. Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting[J]. ACS Nano, 2019, 13(3): 3162-3176. |
98 | REN J W, ANTONIETTI M, FELLINGER T P. Efficient water splitting using a simple Ni/N/C paper electrocatalyst[J]. Advanced Energy Materials, 2015, 5(6): 1401660. |
99 | HUANG Y B, ZHANG M, LIU P, et al. Co3O4 supported on N, P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Chinese Journal of Catalysis, 2016, 37(8): 1249-1256. |
100 | YOUN D H, HAN S, KIM J Y, et al. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support[J]. ACS Nano, 2014, 8(5): 5164-5173. |
101 | LU X Y, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities[J]. Nature Communications, 2015, 6: 6616. |
102 | MA T Y, RAN J R, DAI S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes[J]. Angewandte Chemie, International Edition 2015, 127(15): 4729-4733. |
103 | JIN X, LI J, CUI Y T, et al. In-situ synthesis of porous Ni2P nanosheets for efficient and stable hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5739-5747. |
13 | TAHIR M, PAN L, IDREES F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review[J]. Nano Energy, 2017, 37: 136-157. |
14 | ZHANG C L, WANG B W, SHEN X C, et al. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nano Energy, 2016, 30: 503-510. |
15 | GONG M, LI Y G, WANG H L, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. Journal of the American Chemical Society, 2013, 135(23): 8452-8455. |
16 | ZHANG P, SUN F, XIANG Z H, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy Environ. Sci., 2014, 7(1): 442-450. |
17 | GE X M, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts[J]. ACS Catalysis, 2015, 5(8): 4643-4667. |
18 | PAULUS U A, SCHMIDT T J, GASTEIGER H A, et al. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. Journal of Electroanalytical Chemistry, 2001, 495(2): 134-145. |
19 | FAN X, ZHOU H, GUO X. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2015, 9(5): 5125-5134. |
20 | LIU J L, ZHU D D, ZHENG Y, et al. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions[J]. ACS Catalysis, 2018, 8(7): 6707-6732. |
21 | CHENG L, HUANG W J, GONG Q F, et al. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 126(30): 7994-7997. |
22 | SILVA V D, SIMÕES T A, GRILO J P F, et al. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis[J]. Journal of Materials Science, 2020, 55(15): 6648-6659. |
23 | CUI K X, FAN J C, LI S Y, et al. Three dimensional Ni3S2 nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications[J]. Nanoscale Advances, 2020, 2(1): 478-488. |
24 | WANG X D, CHEN H Y, XU Y F, et al. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(15): 7191-7199. |
25 | LI J Z, WEI G D, ZHU Y K, et al. Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(28): 14828-14837. |
26 | JI X Q, MA M, GE R X, et al. WO3 nanoarray: an efficient electrochemical oxygen evolution catalyst electrode operating in alkaline solution[J]. Inorganic Chemistry, 2017, 56(24): 14743-14746. |
27 | WANG Y N, ZHANG L P, MENG X X, et al. Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range[J]. Electrochimica Acta, 2019, 319: 775-782. |
28 | LIU M J, LI J H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2158-2165. |
29 | DAI J, ZHU Y L, ZHONG Y J, et al. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing[J]. Advanced Materials Interfaces, 2019, 6(1): 1801317. |
30 | PARK M G, LEE D U, SEO M H, et al. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries[J]. Small, 2016, 12(20): 2707-2714. |
31 | ZHANG J T, ZHAO Z H, XIA Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452. |
32 | ZHANG J T, QU L T, SHI G Q, et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition, 2016, 55(6): 2230-2234. |
33 | PATRA S, CHOUDHARY R, ROY E, et al. Heteroatom-doped graphene ‘Idli’: a green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery[J]. Nano Energy, 2016, 30: 118-129. |
34 | HAN X P, HE G W, HE Y, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis[J]. Advanced Energy Materials, 2018, 8(10): 1702222. |
35 | FANG L, JIANG Z Q, XU H T, et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting[J]. Journal of Catalysis, 2018, 357: 238-246. |
36 | TIAN Y H, XU L, QIU J X, et al. Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Sustainable Materials and Technologies, 2020, 25: e00204. |
37 | JIA Y, JIANG K, WANG H T, et al. The role of defect sites in nanomaterials for electrocatalytic energy conversion[J]. Chem., 2019, 5(6): 1371-1397. |
38 | ZHANG L L, XIAO J, WANG H Y, et al. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions[J]. ACS Catalysis, 2017, 7(11): 7855-7865. |
39 | DUAN J J, CHEN S, ORTÍZ-LEDÓN C A, et al. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude[J]. Angewandte Chemie International Edition, 2020, 59(21): 8181-8186. |
40 | WANG Q C, LEI Y P, WANG D S, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019, 12(6): 1730-1750. |
41 | LING T, YAN D Y, JIAO Y, et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis[J]. Nature Communications, 2016, 7: 12876. |
42 | ZHU Y L, ZHOU W, ZHONG Y J, et al. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting[J]. Advanced Energy Materials, 2017, 7(8): 1602122. |
43 | DOU S, WANG X, WANG S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods, 2019, 3(1): 1800211. |
44 | AN L, LI Y X, LUO M C, et al. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries[J]. Advanced Functional Materials, 2017, 27(42): 1703779. |
45 | LIU Y W, CHENG H, LYU M J, et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation[J]. Journal of the American Chemical Society, 2014, 136(44): 15670-15675. |
46 | BAJDICH M, GARCÍA-MOTA M, VOJVODIC A, et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. Journal of the American Chemical Society, 2013, 135(36): 13521-13530. |
47 | ZHANG Z Y, YI Z R, WANG J, et al. Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting[J]. Journal of Materials Chemistry A, 2017, 5(32): 17064-17072. |
48 | JIANG Y F, YANG L J, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5(11): 6707-6712. |
49 | YAN D F, LI Y X, HUO J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29(48): 1606459. |
50 | FAN M M, FENG Z Q, ZHU C L, et al. Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species[J]. Journal of Materials Science, 2016, 51(23): 10323-10349. |
104 | ZHANG R L, FENG J J, YAO Y Q, et al. Straw-like phosphorus-doped Co2MnO4 nanoneedle arrays supported on nickel foam for high-efficiency hydrogen evolution reaction in wide pH range of electrolytes[J]. Applied Surface Science, 2021, 548: 149280. |
105 | WEI D D, TANG W J, WANG Y L. Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation[J]. International Journal of Hydrogen Energy, 2021, 46(40): 20950-20960. |
106 | QAZI U Y, JAVAID R, ZAHID M, et al. Bimetallic NiCo-NiCoO2 nano-heterostructures embedded on copper foam as a self-supported bifunctional electrode for water oxidation and hydrogen production in alkaline media[J]. International Journal of Hydrogen Energy, 2021, 46(36): 18936-18948. |
51 | ZHOU M, WANG H L, GUO S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews, 2016, 45(5): 1273-1307. |
52 | MCFARLAND E W, METIU H. Catalysis by doped oxides[J]. Chemical Reviews, 2013, 113(6): 4391-4427. |
53 | REN X, MA Q, FAN H, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(88): 15997-16000. |
54 | PU Z H, ZHANG C T, AMIINU I S, et al. General strategy for the synthesis of transition-metal phosphide/N-doped carbon frameworks for hydrogen and oxygen evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16187-16193. |
55 | ZHANG P, WEI J S, CHEN X B, et al. Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions[J]. Journal of Colloid and Interface Science, 2019, 537: 716-724. |
56 | IYYAMPERUMAL E, WANG S Y, DAI L M. Vertically aligned BCN nanotubes with high capacitance[J]. ACS Nano, 2012, 6(6): 5259-5265. |
57 | WEI D C, PENG L, LI M L, et al. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition[J]. ACS Nano, 2015, 9(1): 164-171. |
58 | SOARES O S G P, ROCHA R P, GONÇALVES A G, et al. Easy method to prepare N-doped carbon nanotubes by ball milling[J]. Carbon, 2015, 91: 114-121. |
59 | LIU S W, ZHANG H M, ZHAO Q, et al. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Carbon, 2016, 106: 74-83. |
60 | HE Y Z, HAN X J, DU Y C, et al. Heteroatom-doped carbon nanostructures derived from conjugated polymers for energy applications[J]. Polymers, 2016, 8(10): 366. |
61 | GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
62 | SATHE B R, ZOU X X, ASEFA T. Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction[J]. Catal. Sci. Technol., 2014, 4(7): 2023-2030. |
63 | JEON I Y, ZHANG S, ZHANG L P, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect[J]. Advanced Materials, 2013, 25(42): 6138-6145. |
64 | ZHANG C Z, MAHMOOD N, YIN H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials, 2013, 25(35): 4932-4937. |
65 | HU C G, DAI L M. Doping of carbon materials for metal-free electrocatalysis[J]. Advanced Materials, 2019, 31(7): 1804672. |
66 | WANG S Y, IYYAMPERUMAL E, ROY A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011, 50(49): 11756-11760. |
67 | ZHANG H J, YAO S W, GENG J, et al. Oxygen reduction reaction with efficient, metal-free nitrogen, fluoride-codoped carbon electrocatalysts derived from melamine hydrogen fluoride salt[J]. Journal of Colloid and Interface Science, 2019, 535: 436-443. |
68 | LIU G L, LIU Z M, LI J L, et al. Chitosan/phytic acid hydrogel as a platform for facile synthesis of heteroatom-doped porous carbon frameworks for electrocatalytic oxygen reduction[J]. Carbon, 2018, 137: 68-77. |
69 | CHEN Y M, JI S, WANG H, et al. Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5124-5132. |
70 | ZHENG X J, WU J, CAO X C, et al. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes[J]. Applied Catalysis B: Environmental, 2019, 241: 442-451. |
71 | GUPTA S, TRYK D, BAE I, et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. Journal of Applied Electrochemistry, 1989, 19(1): 19-27. |
72 | ZHANG L, WILKINSON D P, LIU Y Y, et al. Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction[J]. Electrochimica Acta, 2018, 262: 326-336. |
73 | QU K G, ZHENG Y, JIAO Y, et al. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting[J]. Advanced Energy Materials, 2017, 7(9): 1602068. |
74 | ZHAO Z H, XIA Z H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions[J]. ACS Catalysis, 2016, 6(3): 1553-1558. |
75 | CAI S C, MENG Z H, TANG H L, et al. 3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2017, 217: 477-484. |
76 | GUO Y Y, YUAN P F, ZHANG J N, et al. Carbon nanosheets containing discrete Co-N x -B y -C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries[J]. ACS Nano, 2018, 12(2): 1894-1901. |
77 | ZHANG Q, YAN D F, NIE Z Z, et al. Iron-doped NiCoP porous nanosheet arrays as a highly efficient electrocatalyst for oxygen evolution reaction[J]. ACS Applied Energy Materials, 2018, 1(2): 571-579. |
78 | DONG Q, WANG Q, DAI Z, et al. MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26902-26907. |
79 | WANG X D, ZHOU H P, ZHANG D K, et al. Mn-doped NiP2 nanosheets as an efficient electrocatalyst for enhanced hydrogen evolution reaction at all pH values[J]. Journal of Power Sources, 2018, 387: 1-8. |
80 | HAN N N, YANG K R, LU Z Y, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid[J]. Nature Communications, 2018, 9: 924. |
81 | XU C, PENG S J, TAN C L, et al. Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2014, 2(16): 5597-5601. |
82 | FOMINYKH K, CHERNEV P, ZAHARIEVA I, et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting[J]. ACS Nano, 2015, 9(5): 5180-5188. |
83 | WANG Z J, JIN C, SUI J, et al. Phosphorus-doped SrCo0.5Mo0.5O3 perovskites with enhanced bifunctional oxygen catalytic activities[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20727-20733. |
84 | GE R Y, HUO J J, SUN M J, et al. Surface and interface engineering: molybdenum carbide-based nanomaterials for electrochemical energy conversion[J]. Small, 2021, 17(9): 1903380. |
85 | YANG J, HU J T, WENG M Y, et al. Fe-cluster pushing electrons to N-doped graphitic layers with Fe3C(Fe) hybrid nanostructure to enhance O2 reduction catalysis of Zn-air batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4587-4596. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[8] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[9] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[10] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[14] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[15] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |