Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5281-5292.DOI: 10.16085/j.issn.1000-6613.2021-0807
• Special column:Resource recycling and value-added utilization • Previous Articles Next Articles
QIU Yuchao1,2(), SHI Junjie1,2(), YU Bin3, XIAO Pan2, ZHAO Fei2, MA Wenyuan2, LI Jianzhong1,2, LIU Changsheng4
Received:
2021-04-16
Revised:
2021-06-04
Online:
2021-10-25
Published:
2021-10-10
Contact:
SHI Junjie
邱玉超1,2(), 石俊杰1,2(), 余彬3, 肖攀2, 赵斐2, 马文远2, 李建中1,2, 刘常升4
通讯作者:
石俊杰
作者简介:
邱玉超(1998—),男,硕士研究生,研究方向为冶金热力学。E-mail:基金资助:
CLC Number:
QIU Yuchao, SHI Junjie, YU Bin, XIAO Pan, ZHAO Fei, MA Wenyuan, LI Jianzhong, LIU Changsheng. Review and perspective of vanadium extraction techniques from converter vanadium-bearing slag[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5281-5292.
邱玉超, 石俊杰, 余彬, 肖攀, 赵斐, 马文远, 李建中, 刘常升. 转炉钒渣提钒技术研究现状及展望[J]. 化工进展, 2021, 40(10): 5281-5292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0807
工艺名称 | 添加剂 | 焙烧温度 /℃ | 焙烧时间 /min | 浸出方式 | 浸出温度 /℃ | 浸出时间 /min | 钒浸出率 /% | 文献 |
---|---|---|---|---|---|---|---|---|
钠化焙烧 | Na2CO3 | 550~820 | 100~120 | H2O | — | — | 84.87 | [ |
Na2CO3 | 700 | 150 | H2O | 90 | 30 | 89.50 | [ | |
Na2CO3 | 850~1050 | 120 | H2O | 90 | 60 | 87.90 | [ | |
Na2CO3, NaOH | 600~1000 | 30~200 | H2O | 90 | 60 | 95.80 | [ | |
钙化焙烧 | CaO | 950 | 60 | H2SO4(20%) | 70 | 60 | 91.14 | [ |
CaCO3 | 850 | 120 | H2SO4(10%) | 50 | 60 | 88.37 | [ | |
Ca(OH)2 | 850 | 120 | H2SO4(10%) | — | — | 85.28 | [ | |
无盐焙烧 | — | 850 | 60 | Na2CO3(10%) | 95 | 150 | 90.00 | [ |
— | 750 | 120 | NaOH(30%) | 180 | 120 | 95.00 | [ | |
复合盐焙烧 | CaO,BaSO4 | 800 | 180 | 稀H2SO4 | 60 | 180 | 85.60 | [ |
CaO,MgO | 850 | 120 | 稀H2SO4 | 50 | 60 | 94.00 | [ | |
硫酸铵焙烧 | (NH4)2SO4 | 370~400 | 90 | H2SO4(6%) | 60 | 60 | 91.00 | [ |
钾盐焙烧 | K2SO4 | 900 | 60 | H2SO4(10%) | 95 | 90 | 71.37 | [ |
镁化焙烧 | MgO | 700~850 | 90 | 稀H2SO4 | 70 | 30 | 93.74 | [ |
锰盐焙烧 | MnO2 | 950 | 120 | H2SO4(10%) | 60 | 60 | 89.48 | [ |
工艺名称 | 添加剂 | 焙烧温度 /℃ | 焙烧时间 /min | 浸出方式 | 浸出温度 /℃ | 浸出时间 /min | 钒浸出率 /% | 文献 |
---|---|---|---|---|---|---|---|---|
钠化焙烧 | Na2CO3 | 550~820 | 100~120 | H2O | — | — | 84.87 | [ |
Na2CO3 | 700 | 150 | H2O | 90 | 30 | 89.50 | [ | |
Na2CO3 | 850~1050 | 120 | H2O | 90 | 60 | 87.90 | [ | |
Na2CO3, NaOH | 600~1000 | 30~200 | H2O | 90 | 60 | 95.80 | [ | |
钙化焙烧 | CaO | 950 | 60 | H2SO4(20%) | 70 | 60 | 91.14 | [ |
CaCO3 | 850 | 120 | H2SO4(10%) | 50 | 60 | 88.37 | [ | |
Ca(OH)2 | 850 | 120 | H2SO4(10%) | — | — | 85.28 | [ | |
无盐焙烧 | — | 850 | 60 | Na2CO3(10%) | 95 | 150 | 90.00 | [ |
— | 750 | 120 | NaOH(30%) | 180 | 120 | 95.00 | [ | |
复合盐焙烧 | CaO,BaSO4 | 800 | 180 | 稀H2SO4 | 60 | 180 | 85.60 | [ |
CaO,MgO | 850 | 120 | 稀H2SO4 | 50 | 60 | 94.00 | [ | |
硫酸铵焙烧 | (NH4)2SO4 | 370~400 | 90 | H2SO4(6%) | 60 | 60 | 91.00 | [ |
钾盐焙烧 | K2SO4 | 900 | 60 | H2SO4(10%) | 95 | 90 | 71.37 | [ |
镁化焙烧 | MgO | 700~850 | 90 | 稀H2SO4 | 70 | 30 | 93.74 | [ |
锰盐焙烧 | MnO2 | 950 | 120 | H2SO4(10%) | 60 | 60 | 89.48 | [ |
1 | 胡艺博, 叶国华, 王恒, 等. 钒市场分析与石煤提钒工艺进展[J]. 钢铁钒钛, 2019, 40(2): 31-40. |
HU Y B, YE G H, WANG H, et al. Market analysis of vanadium and progress on technologies of vanadium extraction from stone coal[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 31-40. | |
2 | 杨绍利, 刘国钦, 陈厚生. 钒钛材料[M]. 北京: 冶金工业出版社, 2007: 10-11. |
YANG Shaoli, LIU Guoqin, CHEN Housheng. Vanadium-titanium materials[M]. Beijing: Metallurgical Industry Press, 2007: 10-11. | |
3 | 陈东辉. 钒产业2017年年度评价[J]. 河北冶金, 2018(12): 1-6. |
CHEN D H. Annual evaluation for vanadium industry in 2017[J]. Hebei Metallurgy, 2018(12): 1-6. | |
4 | 谢元林. 钒在钢中的合金化作用及应用[J]. 特钢技术, 2015, 21(1): 1-5. |
XIE Y L. Effect of vanadium on alloying and its applications[J]. Special Steel Technology, 2015, 21(1): 1-5. | |
5 | BAROCH E F. Vanadium and vanadium alloys[M]// Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, 2000: 1-18. |
6 | 冯飞, 李书文, 汪铁林, 等. 片状铋/钒酸铋复合催化剂的制备及其光催化性能[J]. 无机盐工业, 2021, 53(1): 107-112. |
FENG Fei, LI Shuwen, WANG Tielin, et al. Synthesis and photocatalytic performance of sheet-like Bi/BiVO4 composite catalyst[J]. Inorganic Chemicals Industry, 2021, 53(1): 107-112. | |
7 | 张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3): 281. |
ZHANG Huamin, WANG Xiaoli. Recent progress on vanadium flow battery technologies[J]. Energy Storage Science and Technology, 2013, 2(3): 281. | |
8 | 王凡, 张改莲, 杨凌露, 等. 包核型钒酸铋颜料的合成与性能研究[J]. 北京师范大学学报(自然科学版), 2001, 37(2): 221-224. |
WANG Fan, ZHANG Gailian, YANG Linglu, et al. The synthesis and property study of the coated bismuth vanadate pigment[J]. Journal of Beijing Normal University (Natural Science), 2001, 37(2): 221-224. | |
9 | CARPIO E DEL, HERNÁNDEZ L, CIANGHEROTTI C, et al. Vanadium: history, chemistry, interactions with α-amino acids and potential therapeutic applications[J]. Coordination Chemistry Reviews, 2018, 372: 117-140. |
10 | MOSKALYK R R, ALFANTAZI A M. Processing of vanadium: a review[J]. Minerals Engineering, 2003, 16(9): 793-805. |
11 | HE D S, FENG Q M, ZHANG G F, et al. An environmentally-friendly technology of vanadium extraction from stone coal[J]. Minerals Engineering, 2007, 20: 1184-1186. |
12 | DIAO J, XIE B, WANG Y, et al. Mineralogical characterisation of vanadium slag under different treatment conditions[J]. Ironmaking & Steelmaking, 2009, 36(6): 476-480. |
13 | 付自碧. 钒钛磁铁矿提钒工艺发展历程及趋势[J]. 中国有色冶金, 2011, 40(6): 29-33. |
FU Z B. Development process and trends of vanadium extraction from vanadium-titanium magnetite ore[J]. China Nonferrous Metallurgy, 2011, 40(6): 29-33. | |
14 | 陈东辉. 钒产业2019年年度评价[J]. 河北冶金, 2021, 301(1): 1-11. |
CHEN Donghui. Annual evaluation of vanadium industry in 2019[J]. Hebei Metallurgy, 2021, 301(1): 1-11. | |
15 | BAO S X, ZHANG Y M, LIU T, et al. The production consumption and market analysis of vanadium in the world[J]. China Mining Magazine, 2009, 18(7): 12-15 |
16 | Geological Survey U.S.. Mineral Commodity Summaries 2020[R]. DOI: 10.3133/MCS2020. |
17 | 未来10年钒需求量年均增速3.2%[EB/OL]. (2018-05-08)[2021-04-01]. . |
The average annual growth rate of vanadium demand in the next 10 years is 3.2%[EB/OL]. (2018-05-08)[2021-04-01]. . | |
18 | 王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019(6): 33-37. |
WANG X, HAN Y X, LI Y J, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019(6): 33-37. | |
19 | YILDIRIM IZ, PREZZI M. Chemical mineralogical and morphological properties of steel slag[J]. Advances in Civil Engineering, 2011. DOI: 10.1155/2011/463638. |
20 | 刘仕元. 钒渣中有价元素Fe, Mn, V, Cr 和 Ti 选择性氯化及高值化基础研究[D]. 北京: 北京科技大学, 2019. |
LIU Shiyuan. Fundamental studies on selective chlorination of valuable elements (Fe, Mn, V, Cr and Ti) from vanadium slag and utilizations towards high value added[D]. Beijing: University of Science & Technology Beijing, 2019. | |
21 | 王玲, 崔兆纯, 张羽熙, 等. 钒渣矿物学特征研究[J]. 钢铁钒钛, 2018, 39(1): 13-17. |
WANG Ling, CUI Zhaochun, ZHANG Yuxi, et al. Mineralogical characteristics of vanadium slag[J]. Iron Steel Vanadium Titanium, 2018, 39(1): 13-17. | |
22 | LEE J, KIM E, CHUNG K W, et al. A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production[J]. Journal of Materials Research and Technology, 2021, 12: 343-364. |
23 | SCHANINDLER M, HAWTHORNE F C, BAUR W H. A crystal-chemical approach to the composition and occurrence of vanadium minerals[J]. The Canadian Mineralogist, 2000, 38(6): 1443-1456. |
24 | 张生芹. 钒渣体系物化性能及相平衡的研究[D]. 重庆: 重庆大学, 2012. |
ZHANG Shengqin. Research on physicochemical properties and phase equilibrium of vanadium slag[D]. Chongqing: Chongqing University, 2012. | |
25 | ZHANG X, XIE B, DIAO J, et al. Nucleation and growth kinetics of spinel crystals in vanadium slag[J]. Ironmaking & Steelmaking, 2012, 39(2): 147-154. |
26 | WEN J, JIANG T, XU Y Z, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of Industrial and Engineering Chemistry, 2018, 71: 325-327. |
27 | 吴诰, 潘鹏, 范鹤林, 等. 钒渣提钒研究现状及发展趋势[J]. 江西冶金, 2020, 40(4): 19-27. |
WU Gao, PAN Lin, FAN Helin, et al. A review on the research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020, 40(4): 19-27. | |
28 | LI X S, BING X I, WANG G E, et al. Oxidation process of low-grade vanadium slag in presence of Na2CO3[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1860-1867. |
29 | 赵博. 钒渣钙化焙烧机理的研究[D]. 沈阳: 东北大学, 2014. |
ZHAO Bo. Research on calcification-roasting mechanism of vanadium slag[D]. Shenyang: Northeastern University, 2014. | |
30 | 李晓军. 钒渣中尖晶石生长规律及钒渣钙化焙烧机理的研究[D]. 重庆: 重庆大学, 2011. |
LI Xiaojun. Research on spinels growth law and calcification roasting mechanism of vanadium slag[D]. Chongqing: Chongqing University, 2011. | |
31 | 李兰杰, 张力, 郑诗礼, 等. 钒钛磁铁矿钙化焙烧及其酸浸提钒[J]. 过程工程学报, 2011, 11(4): 573-578. |
LI L J, ZHANG L, ZHENG S L, et al. Acid leaching of calcined vanadium titanomagnetite with calcium compounds for extraction of vanadium [J]. The Chinese Journal of Process Engineering, 2011, 11(4): 573-578. | |
32 | ZHANG J H, ZHANG W, ZHANG L, et al. Mechanism of vanadium slag roasting with calcium oxide[J]. International Journal of Mineral Processing, 2015, 138: 9-20. |
33 | ZHANG J H, ZHANG W, XUE Z L. Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide[J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(5): 265-273. |
34 | PENG H, GUO J, ZHENG X G, et al. Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium[J]. Journal of Environmental Chemical Engineering, 2018, 6: 5119-5124. |
35 | LI H Y, WANG K, HUA W H, et al. Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate[J]. Hydrometallurgy, 2016, 160: 18-25. |
36 | 张菊花, 张伟, 张力, 等. 酸浸对钙化焙烧提钒工艺钒浸出率的影响[J]. 东北大学学报(自然科学版), 2014, 35(11): 1574-1578. |
ZHANG Juhua, ZHANG Wei, ZHANG Li, et al. Effect of acid leaching on the vanadium leaching rate in process of vanadium extraction using calcium roasting[J]. Journal of Northeastern University (Natural Science), 2014, 35(11): 1574-1578. | |
37 | 孙朝晖. 钒新技术及钒产业发展前景分析[J]. 钢铁钒钛, 2012, 33(1): 1-7. |
SUN Z H. Analysis on new vanadium technologies and prospects of vanadium industry[J]. Iron Steel Vanadium Titanium, 2012, 33(1): 1-7. | |
38 | 徐杰. 氯化法制取高纯五氧化二钒工艺研究[D]. 北京: 中国科学院大学, 2018. |
XU J. Research on preparation process of high-purity vanadium pentoxide by chlorination method[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
39 | 董建宏. 富钒资源选择性氯化提钒技术的相关研究[D]. 沈阳: 东北大学, 2011. |
DONG J H. Research on vanadium extraction from vanadium-rich resources by selective chlorination[D]. Shenyang: Northeastern University, 2011. | |
40 | WANG Z H, ZHENG S L, WANG S N, et al. Research and prospect on extraction of vanadium from vanadium slag by liquid oxidation technologies[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1273-1288. |
41 | LI L J, ZHENG S L, CHEN D H, et al. A novel method of leaching vanadium from extracted vanadium residue using sodium sub-molten salt medium[J]. Advanced Materials Research, 2012, 402: 253-260. |
42 | PENG H, LIU Z H, TAO C Y. A green method to leach vanadium and chromium from residue using NaOH-H2O2[J]. Scientific Reports, 2018, 8(1): 426. |
43 | 高明磊, 陈东辉, 李兰杰, 等. 含钒钢渣中钒在KOH亚熔盐介质中溶出行为[J] .过程工程学报, 2011, 11(5): 761-766. |
GAO Minglei, CHEN Donghui, LI Lanjie, et al. Dissolution behavior of vanadium from vanadium-bearing steel slag in KOH sub-molten salt[J]. The Chinese Journal of Process Engineering, 2011, 11(5): 761-766. | |
44 | LIU B, DU H, WANG S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO3 binary system[J]. AIChE Journal, 2013, 59(2): 541-552. |
45 | LIU H B, DU H, WANG D W, et al. Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 1489-1500. |
46 | 郑诗礼, 杜浩, 王少娜, 等. 亚熔盐法钒渣高效清洁提钒技术[J].钢铁钒钛, 2012, 33(1): 15-19. |
ZHENG Shili, DU Hao, WANG Shaona, et al. Efficient and cleaner technology of vanadium extraction from vanadium slag by sub-molten salt method[J]. Iron Steel Vanadium Titanium, 2012, 33(1): 15-19. | |
47 | LI M, ZHENG S, LIU B, et al. A clean and efficient method for recovery of vanadium from vanadium slag: non-salt roasting and ammonium carbonate leaching processes[J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(4): 228-237. |
48 | LI M, DU H, ZHENG S L, et al. Extraction of vanadium from vanadium slag via non-salt roasting and ammonium oxalate leaching[J]. JOM, 2017, 69(10): 1970-1975. |
49 | YUAN J F, CAO Y J, FAN G X, et al. Study on the mechanisms for vanadium phases' transformation of vanadium slag non-salt roasting process[M]// AZIMI G, FORSBERG K M M, OISHI T, et al. Rare Metal Technology 2020. Berlin: Springer International Publishing, 2020. |
50 | WANG C, YUAN Y, XIE B, et al. Mechanism of extraction of vanadium from vanadium slag with MgO [M]// AZIMI G, FORSBERG K M M, OISHI T, et al. Rare Metal Technology 2020. Berlin: Springer International Publishing, 2020. |
51 | LI H Y, WANG C J, YUAN Y H, et al. Magnesiation roasting-acid leaching: a zero-discharge method for vanadium extraction from vanadium slag[J]. Journal of Cleaner Production, 2020, 260: 121091. |
52 | WEN J, JIANG T, WANG J P, et al. Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle[J]. Journal of Cleaner Production, 2020, 261: 121205. |
53 | NKOSI S, DIRE P, NYAMBENI N, et al. A comparative study of vanadium recovery from titaniferous magnetite using salt, sulphate, and soda ash roast- leach processes[C]// 3rd Young Professionals Conference, 2017: 191-200. |
54 | 张新霞. 高硅高钙钒渣钠化焙烧工艺的优化研究[J]. 铁合金, 2013, 44(1): 22-24, 29. |
ZHANG Xinxia. Optical research on vanadium slag with high Si high Ca sodium roasting process[J]. Ferro-Alloys, 2013, 44(01): 22-24, 29. | |
55 | 李新生. 高钙低品位钒渣焙烧-浸出反应过程机理研究[D]. 重庆: 重庆大学, 2011. |
LI Xinsheng. Mechanism research on oxidation roasting and leaching process of high calcium low-grade vanadium slag[D]. Chongqing: Chongqing University, 2011. | |
56 | LI H Y, FANG H X, WANG K, et al. A synchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching[J]. Hydrometallurgy, 2015, 156: 124-135. |
57 | LI M, XIAO L, LIU J J, et al. Effective extraction of vanadium and chromium from high chromium content vanadium slag by sodium roasting and water leaching[J]. Materials Science Forum, 2016, 863: 144-148. |
58 | WEN J, JIANG T, ZHOU M, et al. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(5): 515-526. |
59 | 孙红艳, 曹婧, 温婧, 等. 钒渣钙化焙烧过程的富氧强化研究[J]. 材料与冶金学报, 2020, 19(3): 170-175, 184. |
SUN H Y, CAO J, WEN J, et al. Study of oxygen enriched strengthening from vanadium slag with calcified roasting[J]. Journal of Materials and Metallurgy, 2020, 19(3): 170-175, 184. | |
60 | 余唐霞, 曹婧, 温婧, 等. 钒渣钙化焙烧添加剂选择及工艺优化[J]. 材料与冶金学报, 2020, 19(3): 176-184. |
YU T X, CAO J, WEN J, et al. Selection of additives for vanadium slag calcification roasting and process optimization[J]. Journal of Materials and Metallurgy, 2020, 19(3): 176-184. | |
61 | LI X S, BING X. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(7): 595-601. |
62 | 李兰杰, 陈东辉, 白瑞国, 等. 钒渣空白焙烧高效清洁提钒技术[J]. 河北冶金, 2014(12): 29-33. |
LI L J, CHEN D H, BAI R G, et al. High-efficiency clean vanadium-extracting technique of vanadium slag blank calcination[J]. Hebei Metallurgy, 2014(12): 29-33. | |
63 | 蔡俊, 颜文斌, 华骏, 等. 复合添加剂焙烧-稀酸浸出清洁提钒工艺研究[J]. 稀有金属与硬质合金, 2015, 43(4): 10-12, 33. |
CAI J, YAN W B, HUA J, et al. Study on environment-friendly vanadium extraction process by roasting with composite additives and leaching with dilute acid[J]. Rare Metals and Cemented Carbides, 2015, 43(4): 10-12, 33. | |
64 | XIANG J Y, WANG X, PEI G S, et al. Recovery of vanadium from vanadium slag by composite roasting with CaO/MgO and leaching[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3114-3123. |
65 | ZHANG Guoquan, LUO Dongmei, DENG Chenhui, et al. Simultaneous extraction of vanadium and titanium from vanadium slag using ammonium sulfate roasting-leaching process[J]. Journal of Alloys and Compounds, 2018, 742: 504-511. |
66 | LI R M, LIU T ZHANG Y M, et al. Efficient extraction of vanadium from vanadium-titanium magnetite concentrate by potassium salt roasting additives[J]. Minerals, 2018, 8(1): 25. |
67 | MIRAZIMI S M J, RASHCHI F, SABA M. A new approach for direct leaching of vanadium from LD converter slag[J]. Chemical Engineering Research and Design, 2015, 94: 131-140. |
68 | LIU H B, LIU B, LI L J, et al. Novel methods to extract vanadium from vanadium slag by liquid oxidation technology[J]. Advanced Materials Research, 2012, 396: 1786-1793. |
69 | DENG R R, XIE Z M, LIU Z H, et al. Enhancement of vanadium extraction at low temperature sodium roasting by electric field and sodium persulfate[J]. Hydrometallurgy, 2019, 189: 105110. |
70 | WANG Z H, ZHENG S L, WANG S N, et al. Electrochemical decomposition of vanadium slag in concentrated NaOH solution[J]. Hydrometallurgy, 2015, 151: 51-55. |
71 | LIU Z H, LI Y, CHEN M L, et al. Enhanced leaching of vanadium slag in acidic solution by electro-oxidation[J]. Hydrometallurgy, 2016, 159: 1-5. |
72 | ZHANG G Q, ZHANG T A, LYU G Z, et al. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(1): 21-26. |
73 | ZHANG G Q, ZHANG T A, LYU G, et al. Extraction of vanadium from LD converter slag by pressure leaching process with titanium white waste acid[J]. Rare Metal Materials and Engineering, 2015, 44(8): 1894-1898. |
74 | 张廷安, 牟望重, 豆志河, 等. 转炉钒渣氧压酸浸过程V-Fe-H2O系的电位-pH图[J]. 中国有色金属学报, 2011, 21(11): 2936-2945. |
ZHANG T A, MU W Z, DOU Z H, et al. Potential—pH diagrams for V-Fe-H2O system during oxygen pressure acid leaching of vanadium-bearing converter slags[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(11): 2936-2945. | |
75 | MCCARLEY R E, RODDY J W. The preparation of high purity vanadium pentoxide by a chlorination procedure[J]. Journal of the Less Common, 1960, 2(1): 29-35. |
76 | 李卓臣, 杜光超, 范川林, 等. 氯化法制备高纯五氧化二钒技术研究进展[J]. 钢铁钒钛, 2021, 42(1): 8-15. |
LI Zhuochen, DU Guangchao, FAN Chuanlin, et al. Review on research progress of high purity vanadium pentoxide preparation by chlorination process[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 8-15. | |
77 | 姜单单. 氯化铝低温氯化法五氧化二钒提纯工艺研究[D]. 北京: 中国科学院大学, 2017. |
JIANG Dandan. Purification technology of vanadium pentoxide by low temperature chlorination with anhydrous aluminum chloride[D].. Beijing: University of Chinese Academy of Sciences, 2017. | |
78 | GAO H Y, JIANG T, XU Y Z, et al. Change in phase, microstructure, and physical-chemistry properties of high chromium vanadium slag during microwave calcification-roasting process[J]. Powder Technology, 2018, 340: 520-527. |
79 | ZHANG X F, LIU F G, XUE X X, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content[J]. Journal of Alloys and Compounds, 2016, 686: 356-65. |
80 | GAO H Y, JIANG T, ZHOU M, et al. Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag[J]. Minerals Engineering, 2020, 145: 106056. |
81 | TIAN L, XU Z, CHEN L, et al. Effect of microwave heating on the pressure leaching of vanadium from converter slag[J]. Hydrometallurgy, 2019, 184: 45-54. |
82 | WEN J, JIANG T, GAO H Y, et al. Comparison of ultrasound-assisted and regular leaching of vanadium and chromium from roasted high chromium vanadium slag[J]. JOM, 2018, 70(2): 155-160. |
83 | 余文华. 微波加热在钒钛磁铁矿冶金领域应用的研究进展[J]. 钢铁钒钛, 2011, 32(3): 87-96. |
YU Wenhua. Research progress of the application of microwave heating in the metallurgy field of vanadium and titanium magnetite[J]. Iron Steel Vanadium Titanium, 2011, 32(3): 87-96. | |
84 | ZHANG G Q, ZHANG T A, LYU G, et al. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag[J]. JOM, 2016, 68(2): 577-584. |
85 | 李军成. 熔渣中钒, 钛和铈化合物超重力分离技术基础[D]. 北京: 北京科技大学, 2015. |
LI Juncheng. Technical fundament on separating vanadium, titanium and cerium compounds from molten slag by super gravity[D]. Beijing: University of Science & Technology Beijing, 2015. | |
86 | 李军成, 郭占成, 高金涛. CaO-TiO2-SiO2-Al2O3-MgO熔体冷却过程中钙钛矿相超重力富集[J]. 稀有金属, 2014, 38(1): 93-101. |
LI Juncheng, GUO Zhancheng, GAO Jintao. Enriching perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity during cooling process[J]. Chinese Journal of Rare Metals, 2014, 38(1): 93-101. | |
87 | LI J C, GUO Z C, GAO J T. Assessment of super-gravity concentrating V-containing spinel phase from vanadium slag[J]. High Temperature Materials and Processes, 2015, 34(1): 61-70. |
88 | GOMES H I, FUNARI V, MAYES W M, et al. Recovery of Al, Cr and V from steel slag by bioleaching: batch and column experiments[J]. Journal of Environmental Management, 2018, 222: 30-36. |
89 | NTITA J, NHETA W. Investigation on the mechanisms of bio-processing vanadium slags[C]// Proceedings of 5th International Slag Volarisation Symposium, Leuven, Belgia, 2017. |
90 | LEE J C, PANDEY B D. Bio-processing of solid wastes and secondary resources for metal extraction-a review[J]. Waste Management, 2012, 32(1): 3-18. |
91 | MIRAZIMI S M, ABBASALIPOUR Z, RASHCHI F. Vanadium removal from LD converter slag using bacteria and Fungi[J]. Journal of Environmental Management, 2015, 153: 144-151. |
92 | MIRAZIMI S M, RASHCHI F. Optimization of bioleaching of a vanadium containing slag using RSM[C]// 7th IChEC, Kish, Iran, 2011. |
93 | 陈东辉. 钒产业2018年年度评价[J]. 河北冶金, 2019(8): 9-19, 86. |
CHEN Donghui. Annual evaluation for vanadium industry in 2018[J]. Hebei Metallurgy, 2019(8): 9-19, 86. | |
94 | 刘淑清. 近年全球钒制品生产现状及发展趋势[J]. 钢铁钒钛, 2014, 35(3): 55. |
LIU Shuqing. Production status and development trend of vanadium product in world in recent years[J]. Iron Steel Vanadium Titanium, 2014, 35(3): 55. |
[1] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[5] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[6] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[7] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[8] | HE Shanming, PAN Jiechang, XU Guozuan, LI Wenjun, LIANG Yong. Thermodynamic analysis and experimental verification of chromium and vanadium removal by ferrous salt precipitation from crude sodium tungstate solution [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2171-2179. |
[9] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[10] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
[11] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[12] | CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. |
[13] | LI Chao, MIAO Jiabing, WANG Liping, CUI Yongjie, LI Yifan. Extraction of lithium from evaporation mother liquor [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 637-642. |
[14] | XU Lijie, LIU Haojie, XUE Rui, ZHOU Xiaoli, ZHOU Jie, QIAN Xiujuan, DONG Weiliang, JIANG Min. Interdisciplinary assistance for biological recycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5029-5036. |
[15] | WANG Yujing, ZHANG Nan, LIU Shejiang, MIAO Chen, LIU Xiuli. Performance and mechanism of thermochemical technology for oily sludge cleaning [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3333-3340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |