Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 232-241.DOI: 10.16085/j.issn.1000-6613.2019-1580
• Resources and environmental engineering • Previous Articles Next Articles
Weijing YU(), Chao MA, Wenbin TAN, Lei CUI, Yubin CHEN, Changhao LI
Received:
2019-10-08
Online:
2020-06-29
Published:
2020-05-20
Contact:
Weijing YU
通讯作者:
于伟静
作者简介:
于伟静(1990—),男,硕士,研究方向为电力环保。E-mail:CLC Number:
Weijing YU, Chao MA, Wenbin TAN, Lei CUI, Yubin CHEN, Changhao LI. Research progress of white plume control in coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 232-241.
于伟静, 马超, 谭闻濒, 崔磊, 陈玉彬, 李昌浩. 燃煤电厂白色烟羽控制研究进展[J]. 化工进展, 2020, 39(S1): 232-241.
白色烟羽控制技术 | 技术特点 | 技术研究/应用情况 | |||
---|---|---|---|---|---|
烟气加热技术 | |||||
直接加热技术 | 热二次风混合加热 | 系统简单、投资低,能耗高 | 谏壁电厂、利港电厂、台山电厂[ | ||
燃气直接加热 | 污染物排放增加,运行费用高 | 在大机组无应用业绩[ | |||
热空气混合加热 | 无二次污染,能耗高 | 应用业绩少[ | |||
间接换热加热技术 | 回转式GGH | 运行维护成本低,易积灰、腐蚀、堵塞 | 超低改造时基本全部拆除,部分低硫分燃煤电厂保留,如华能南通电厂、汕头电厂、外高桥电厂[ | ||
水媒式GGH | 技术成熟、系统简单,要求系统前后烟道有足够空间且引风机裕量充足 | 应用较多,如华能淮阴电厂、华能长兴电厂、华能玉环电厂等[ | |||
热管式GGH | 无二次污染,占地面积大 | 部分应用,如苏州热电[ | |||
管式GGH | 适用于小机组及垃圾电厂 | 部分应用,如华能海口电厂、韶关电厂、渭河电厂[ | |||
蒸汽换热器 | 能耗高、经济性差,一般作为辅助加热手段 | 案例较少,重庆九龙电厂安装,后更换为GGH[ | |||
烟气除水技术 | |||||
烟气冷凝技术 | 间接冷却技术 | 冷凝器 | 技术成熟,烟道改造困难,存在结垢、腐蚀问题,要求引风机裕量充足 | 应用案例多,如上海外高桥第三发电厂、常州电厂[ | |
空冷WESP技术 | 适用于安装湿式静电除尘器的电厂,改造及运行费用低 | 国内无应用,国外有示范项目[ | |||
直接冷却技术 | 浆液冷却技术 | 改造及运行费用低,水平衡问题无法解决 | 应用案例多,如华润徐州电厂、天津国电津能热电有限公司等[ | ||
喷淋冷却技术 | 需另设加药系统,占地面积大 | 应用案例少 | |||
膜法工艺 | 占地面积小、能量损失少、操作简便,膜材选择是关键,存在结垢、堵塞问题 | 无应用案例,只有中试[ | |||
吸收法工艺 | 能耗高、存在腐蚀、安全问题 | 无应用案例 | |||
其他技术 | 除雾器 | 只可捕集液态水,无法去除气态水 | 不适用于白色烟羽控制 | ||
声波除雾 | |||||
烟囱收水环 | |||||
湿式静电除尘器 |
白色烟羽控制技术 | 技术特点 | 技术研究/应用情况 | |||
---|---|---|---|---|---|
烟气加热技术 | |||||
直接加热技术 | 热二次风混合加热 | 系统简单、投资低,能耗高 | 谏壁电厂、利港电厂、台山电厂[ | ||
燃气直接加热 | 污染物排放增加,运行费用高 | 在大机组无应用业绩[ | |||
热空气混合加热 | 无二次污染,能耗高 | 应用业绩少[ | |||
间接换热加热技术 | 回转式GGH | 运行维护成本低,易积灰、腐蚀、堵塞 | 超低改造时基本全部拆除,部分低硫分燃煤电厂保留,如华能南通电厂、汕头电厂、外高桥电厂[ | ||
水媒式GGH | 技术成熟、系统简单,要求系统前后烟道有足够空间且引风机裕量充足 | 应用较多,如华能淮阴电厂、华能长兴电厂、华能玉环电厂等[ | |||
热管式GGH | 无二次污染,占地面积大 | 部分应用,如苏州热电[ | |||
管式GGH | 适用于小机组及垃圾电厂 | 部分应用,如华能海口电厂、韶关电厂、渭河电厂[ | |||
蒸汽换热器 | 能耗高、经济性差,一般作为辅助加热手段 | 案例较少,重庆九龙电厂安装,后更换为GGH[ | |||
烟气除水技术 | |||||
烟气冷凝技术 | 间接冷却技术 | 冷凝器 | 技术成熟,烟道改造困难,存在结垢、腐蚀问题,要求引风机裕量充足 | 应用案例多,如上海外高桥第三发电厂、常州电厂[ | |
空冷WESP技术 | 适用于安装湿式静电除尘器的电厂,改造及运行费用低 | 国内无应用,国外有示范项目[ | |||
直接冷却技术 | 浆液冷却技术 | 改造及运行费用低,水平衡问题无法解决 | 应用案例多,如华润徐州电厂、天津国电津能热电有限公司等[ | ||
喷淋冷却技术 | 需另设加药系统,占地面积大 | 应用案例少 | |||
膜法工艺 | 占地面积小、能量损失少、操作简便,膜材选择是关键,存在结垢、堵塞问题 | 无应用案例,只有中试[ | |||
吸收法工艺 | 能耗高、存在腐蚀、安全问题 | 无应用案例 | |||
其他技术 | 除雾器 | 只可捕集液态水,无法去除气态水 | 不适用于白色烟羽控制 | ||
声波除雾 | |||||
烟囱收水环 | |||||
湿式静电除尘器 |
1 | BP集团. BP世界能源统计年鉴[EB/OL]. [EB/OL]. . |
2 | 中国电力企业联合会. 2018年全国电力工业统计快报一览表[EB/OL]. . |
China Electricity Council. List of national electricity industry statistics express in 2018 [EB/OL]. . | |
3 | 朱法华, 孙尊强, 申智勇. 超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J]. 中国电力, 2019, 52(8): 1-7. |
ZHU Fahua, SUN Zunqiang, SHEN Zhiyong. Cause analysis of colored smoke plume and related studies on economic and environmental benefits of its treatment technologies for ultra-low emission coal-fired power plants[J]. Electric Power, 2019, 52(8): 1-7. | |
4 | 朱法华, 李军状, 马修元, 等. 清洁煤电烟气中非常规污染物的排放与控制[J]. 电力科技与环保, 2018, 34(1): 23-26. |
ZHU Fahua, LI Junzhuang, MA Xiuyuan, et al. Emission and control of unconventional pollutants in the clean coal power flue gas[J]. Electric Power Technology and Environmental Protection, 2018, 34(1): 23-26. | |
5 | 郦建国, 朱法华, 孙雪丽. 中国火电大气污染防治现状及挑战[J]. 中国电力, 2018, 51(6): 6-14. |
LI Jianguo, ZHU Fahua, SUN Xueli. Current status and challenges of atmospheric pollution prevention and control of thermal power plants in China[J]. Electric Power, 2018, 51(6): 6-14. | |
6 | 中华人民共和国国家发展和改革委员会. 关于印发《煤电节能减排升级与改造行动计划(2014—2020年)》的通知[EB/OL]. . |
National Development and Reform Commission. Issued a circular on “the plan action of transformation and upgrading of coal-fired plant for energy conservation and emissions reduction (2014-2020)”[EB/OL]. . | |
7 | 中华人们共和国环境保护部. 关于引发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知[EB/OL]. . |
Ministry of Environmental Protection of the People’s Republic of China. Issued a circular on “Full implementation of coal-fired power plant ultra-low emissions and energy saving modification scheme”[EB/OL]. . | |
8 | 李军状, 朱法华, 李小龙, 等. 燃煤电厂烟气中可凝结颗粒物测试研究进展与方法构建[J]. 电力科技与环保, 2018, 34(1): 37-44. |
LI Junzhuang, ZHU Fahua, LI Xiaolong, et al. Process and method construction of condensable particles in flue gas of coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2018, 34(1): 37-44. | |
9 | 上海市环境保护局. 上海市燃煤电厂石膏雨和有色烟羽测试技术要求(试行)[EB/OL]. . |
Shanghai Environmental Protection Bureau. Technical requirements for testing gypsum rain and non-ferrous plume in Shanghai coal-fired power plant (trial implementation) [EB/OL]. . | |
10 | 天津市环境保护局, 天津市市场和质量监督管委会. 火电厂大气污染物排放标准: DB12/ 810—2018[S]. 2018.Tianjin Environmental Protection Bureau,Tianjin Market and Quality Supervision and Management Committee. Emission standard of air pollutants for thermal power plants: DB12/ 810—2018 [S]. 2018. |
11 | 浙江省人民政府. 燃煤电厂大气污染物排放标准:DB33/ 2147—2018 [S]. 2018.The People’s Government of Zhejiang Province. Emission standard of air pollutants for coal-fired power plants: DB33/2147—2018[S]. 2018. |
12 | 河北省钢铁、焦化、燃煤电厂深度减排攻坚方案[EB/OL]. .Deep emission reduction solutions for iron and steel, coking and coal-fired power plants in Hebei province[EB/OL]. . |
13 | 徐州市2018年大气污染防治攻坚行动方案[EB/OL]. . |
Action plan for air pollution prevention and control in Xuzhou city in 2018[EB/OL]. . | |
14 | 李瑜. 我国各地烟气“脱白”政策[J]. 砖瓦, 2018(12): 88. |
LI Yu. The policy of “white plume control”in China[J]. Brick-Tile, 2018(12): 88. | |
15 | 赵雪, 程茜, 侯俊先. 脱硫脱硝行业技术发展综述[J]. 中国环保产业, 2018(9): 14-22. |
ZHAO Xue, CHENG Qian, HOU Junxian. Development report on desulfurization and development industry technology in 2017[J]. China Environmental Protection Industry, 2018(9): 14-22. | |
16 | 王琳, 刘广建, 陈海平. 燃煤电厂烟气湿烟羽消除技术[J]. 中国电力, 2019, 52(10): 162-170. |
WANG Lin, LIU Guangjian, CHEN Haiping. Wet plume removal technologies for coal-fired power plants[J]. Electric Power, 2019, 52(10): 162-170. | |
17 | 刘志坦, 惠润堂, 杨爱勇, 等. 燃煤电厂湿烟羽成因及对策研究[J]. 环境与发展, 2017, 29(10): 43-46. |
LIU Zhitan, HUI Runtang, YANG Aiyong, et al. Research on causes and countermeasures of the wet plume in coal-fired power plant[J]. Environment and Development, 2017, 29(10): 43-46. | |
18 | 曹凌燕. 燃煤电厂白色烟羽的形成与消除研究[J]. 锅炉技术, 2019, 50(3): 60-65. |
CAO Lingyan. Research on formation and elimination of white plume in coal-fired plant[J]. Boiler Technology, 2019, 50(3): 60-65. | |
19 | 于伟静, 汪永威, 吕小林, 等. 燃煤电厂白色烟羽的潜值和控制策略评价[J]. 化工进展, 2019, 38(3): 1579-1586. |
YU Weijing, WANG Yongwei, Xiaolin LÜ, et al. Evaluation of potential and control strategy of white plume in the coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1579-1586. | |
20 | 张路涛, 程明明, 周瑞, 等. 燃煤机组烟羽治理技术研究[J]. 节能, 2019, 38(7): 19-21. |
ZHANG Lutao, CHENG Mingming, ZHOU Rui, et al. Technical research of white plume control in coal-fired power plant[J]. Energy Conservation, 2019, 38(7): 19-21. | |
21 | 高源. 锅炉烟气除白烟羽研究与实现[D]. 沈阳: 辽宁工业大学, 2019. |
GAO Yuan. Research and realization of eliminating white smoke from boiler flue gas [D]. Shenyang: Liaoning University of Technology, 2019. | |
22 | 单永华. 燃煤电厂湿烟囱白烟机理及治理方法研究[J]. 中国资源综合利用, 2018, 36(9): 98-102. |
SHAN Yonghua. Study on mechanism and treatment method of white smoke in wet chimney of coal-fired power plant[J]. China Resources Comprehensive Utilization, 2018, 36(9): 98-102. | |
23 | 谭厚章, 刘兴, 王文慧, 等. 超低排放背景下烟气消白技术路线研究[J]. 洁净煤技术, 2019, 25(2): 38-44. |
TAN Houzhang, LIU Xing, WANG Wenhui, et al. Research on wet flue gas plume elimination technology in the context of ultra low emission[J]. Clean Coal Technology, 2019, 25(2): 38-44. | |
24 | 马修元, 惠润堂, 杨爱勇, 等. 湿烟羽形成机理与消散技术数值分析[J]. 科学技术与工程, 2017, 17(22): 220-224. |
MA Xiuyuan, HUI Runtang, YANG Aiyong, et al. Numerical analysis of wet plume formation mechanism and dissipation technique[J]. Science Technology and Engineering, 2017, 17(22): 220-224. | |
25 | WANG J, WANG S, XU X, et al. Evaluation of alternative arrangements of a heat pump system for plume abatement in a large-scale chiller plant in a subtropical region[J]. Energy & Buildings, 2009, 41(6): 596-606. |
26 | WANG S W, TYAGI S K, SHARMA A, et al. Application of solar collectors to control the visible plume from wet cooling towers of a commercial building in Hong Kong: a case study[J]. Applied Thermal Engineering, 2007, 27(8/9): 1394-1404. |
27 | MORTENSEN K. Use of Air2Air technology to recover fresh-water from the normal evaporative cooling loss at coal-based thermoelectric power plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 92(3): 704-708. |
28 | DEZIANI M, RAHMANI K, ROUDAKI S J M, et al. Feasibility study for reduce water evaporative loss in a power plant cooling tower by using air to air heat exchanger with auxiliary fan[J]. Desalination, 2017, 406: 119-124. |
29 | HUBBARD B J, MOCKRY E F, KINNEY O L. Air-to-air atmospheric exchanger for condensing cooling tower effluent: US 6663694B2 [P]. 2003. |
30 | XU X, WANG S, MA Z. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region[J]. Applied Thermal Engineering, 2008, 28(11): 1471-1484. |
31 | TYAGI S K, WANG S, MA Z. Prediction, potential and control of plume from wet cooling tower of commercial buildings in Hong Kong: a case study[J]. International Journal of Energy Research, 2007, 31(8): 778-795. |
32 | TYAGI S K, WANG S, PARK S R, et al. Economic considerations and cost comparisons between the heat pumps and solar collectors for the application of plume control from wet cooling towers of commercial buildings[J]. Renewable & Sustainable Energy Reviews, 2008, 12(8): 2194-2210. |
33 | WINTER A R. Control of visible plumes from cooling towers[J]. Proceedings of the Institution of Mechanical Engineers A: Journal of Power & Energy, 1997, 211(1): 67-72. |
34 | TAKATA K, MICHIOKA T, KUROSE R. Prediction of a visible plume from a dry and wet combined cooling tower and its mechanism of abatement[J]. Atmosphere, 2016, 7(4): 59. |
35 | CHAN M H. Cooling tower performance analysis and visible air plume abatement in buildings situated in temperate climate zone [D]. Cardiff University, 2015. |
36 | KOUCHI A, OHBA R, OKABAYASHI K, et al. Prediction technique for visible plume from cooling tower[J]. Mitsubishi Heavy Industries Technical Review, 1999, 36(3): 75-79. |
37 | MICHIOKA T, SATO A, KANZAKI T, et al. Wind tunnel experiment for predicting a visible plume region from a wet cooling tower[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(8): 741-754. |
38 | LIU M, QIN Y, YAN H, et al. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies[J]. Energy Conversion & Management, 2015, 105: 118-126. |
39 | JIA L, PENG X F, SUN J D, et al. An experimental study on vapor condensation of wet flue gas in a plastic heat exchanger[J]. Heat Transfer — Asian Research, 2001, 30(7): 571-580. |
40 | HAN X, YAN J, KARELLAS S, et al. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system[J]. Applied Thermal Engineering, 2016, 110: 442-456. |
41 | LEVY E, BILIRGEN H, DUPOINT J. Recovery of water from boiler flue gas using condensing heat exchangers [R]. Lehigh University, 2011. |
42 | JEONG K, KESSEN M J, BILIRGEN H, et al. Analytical modeling of water condensation in condensing heat exchanger[J]. International Journal of Heat & Mass Transfer, 2010, 53(11): 2361-2368. |
43 | JEONG K. Condensation of water vapor and sulfuric acid in boiler flue gas[M]. Charleston S C, United States: Proquest, Umi Dissertation Publishing, 2009. |
44 | CHEN H, ZHOU Y, SUN J, et al. An experimental study of membranes for capturing water vapor from flue gas[J]. Journal of the Energy Institute, 2018, 91(3): 339-348. |
45 | SIJBESMA H, NYMEIJER K, MARWIJK R VAN, et al. Flue gas dehydration using polymer membranes[J]. Journal of Membrane Science, 2008, 313(1/2): 263-276. |
46 | MACEDONIO F, CERSOSIMO M, BRUNETTI A, et al. Water recovery from humidified waste gas streams: quality control using membrane condenser technology[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 196-203. |
47 | WANG D, BAO A, KUNC W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
48 | DAAL L, KAMPHUIS H, STAM A, et al. Evaluation of different water vapor capture technologies and energy modeling results for membrane technology[OB/EL]. [2019-10-08]. . |
49 | 孙栓柱, 梁绍华, 孙虹, 等. 1000MW机组抽热风加热脱硫出口净烟气的经济性研究[J]. 电站系统工程, 2016, 32(2): 31-33, 36. |
SUN Shuangzhu, LIANG Shaohua, SUN Hong, et al. Economy study on hot air heating desulfurization outlet flue gas in 1000MW unit[J]. Power System Engineering, 2016, 32(2): 31-33, 36. | |
50 | 王春昌. 掺二次热风加热脱硫出口净烟气技术的经济性[J]. 中国电力, 2012, 45(1): 37-40. |
WANG Chunchang. Economical efficiency of the technology using secondary hot air for heating cleaned outlet flue gas of the FGD[J]. Electric Power, 2012, 45(1): 37-40. | |
51 | PAN Peiyuan, CHEN Heng, LIANG Zhiyuan, et al. Experimental study on corrosion of steels for flue gas reheaters in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 115: 267-279. |
52 | 叶毅科, 惠润堂, 杨爱勇, 等. 燃煤电厂湿烟羽治理技术研究[J]. 电力科技与环保, 2017, 33(4): 32-35. |
YE Yike, HUI Runtang, YANG Aiyong, et al. Technical research of wet plume control in coal-fired power plant[J]. Electric Power Technology and Environmental Protection, 2017, 33(4): 32-35. | |
53 | 张杰, 任艳, 张康, 等. 热管式GGH取代回转式GGH的可行性分析[J]. 建筑热能通风空调, 2010, 29(5): 66-68, 45. |
ZHANG Jie, REN Yan, ZHANG Kang, et al. Feasibility analysis of replacement of heat-pipe GGH to regenerative GGH[J]. Building Energy & Environment, 2010, 29(5): 66-68, 45. | |
54 | LI Y, YAN M, ZHANG L, et al. Method of flash evaporation and condensation-heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery[J]. Applied Energy, 2016, 172: 107-117. |
55 | PIERONI S, JHOSMAR L. Estimation of water footprints and review of water-saving/recovery approaches in coal-fired power plants' cooling systems [D]. Cincinnati: University of Cincinnati, 2013. |
56 | CHEN Y. Optimization of the fin configuration of air-cooled condensing wet electrostatic precipitator for water recovery from power plant flue gas [D]. Cincinnati: University of Cincinnati, 2013. |
57 | 朱法华. 烟气消白是美容不是治病[J]. 电力设备管理, 2019(1): 32-33. |
ZHU Fahua. White plume elimination of flue gas is beauty is not a cure[J]. Electric Power Equipment Management, 2019(1): 32-33. | |
58 | MEI J R. Trace element behavior in coal-fired power plants[J]. Fuel Processing Technology, 1994, 39(1/2/3): 199-217. |
59 | 王珲, 宋蔷, 姚强, 等. 电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J]. 中国电机工程学报, 2008, 28(5): 1-7. |
WANG Hui, SONG Qiang, YAO Qiang, et al. Experimental study on removal effect of wet flue gas desulfurization system on fine particles from a coal-fired power plant[J]. Proceedings of the CSEE, 2008, 28(5): 1-7. | |
60 | 王树民, 宋畅, 陈寅彪, 等. 燃煤电厂大气污染物“近零排放”技术研究及工程应用[J]. 环境科学研究, 2015, 28(4): 487-494. |
WANG Shumin, SONG Chang, CHEN Yinbiao, et al. Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants[J]. Research of Environmental Sciences, 2015, 28(4): 487-494. | |
61 | 王东歌, 朱法华, 易玉萍, 等. 基于实测的湿法脱硫系统对颗粒物去除效果的研究[J]. 环境监测管理与技术, 2015, 27(5): 21-24. |
WANG Dongge, ZHU Fahua, YI Yuping, et al. Removal efficiency of WFGD system to particles based on field tests[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(5): 21-24. | |
62 | LI Zhen, JIANG Jingkun, MA Zizhen, et al. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 2017, 230: 655-662. |
63 | TAN D, HU F, THIERIOT H, et al. Towards a water &energy secure China[EB/OL]. China Water Risk, 2015. . |
[1] | ZHENG Chengqiang, LI Xiaolong, LI Junzhuang, DUAN Jiuxiang, YANG Linjun. Research progress on migration and transformation characteristics of escaped ammonia in coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 964-973. |
[2] | YU Yang, ZHOU Xin, CHENG Junfeng, DONG Changqing, WANG Yushan, LIU Yinghua. Research progress in detection methods, emission natures and removal technologies of condensable particulate matter from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4515-4524. |
[3] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
[4] | Yingli YU, Xuchen FU, Yingying DAI, Jun RONG, Zhengping GAO, Bin CAI, Junhu HU. Analysis and countermeasure of high temperature corrosion on water wall of coal-fired power plant boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 90-96. |
[5] | Peng FENG, Zhenghong LI, Hexin LIU, Houzhang TAN, Sicong ZHANG, Xuchao LU, Fuxin YANG. Migration and removal characteristics of SO3 in ultra-low emission coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4660-4667. |
[6] | Zejian HUANG,Yiqing LUO,Xigang YUAN. Environmental impact assessment of water treatment integrated microalgae biodiesel life cycle system [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 34-41. |
[7] | Xiaolong LI,Fahua ZHU,Jiuxiang DUAN,Junzhuang LI,Liu YANG,Wenjie ZHANG. An overview of condensable particulate matter emission from stationary sources [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5091-5102. |
[8] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
[9] | Weijing YU,Yongwei WANG,Xiaolin LÜ,Yuannan XIONG,Teng LONG,Peizheng LI. Evaluation of potential and control strategy of white plume in the coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1579-1586. |
[10] | Haiping XIAO,Yuhui CHEN,Jinlin GE,Xiaoning WANG,Jianlin XI,Lining LIU. Online monitoring heating surface pollution of a boiler economizer in coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1573-1578. |
[11] | LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. |
[12] | LIU Hanxiao, YAO Yuping, LI Jianguo, HE Yuzhong, CHEN Zhaomei, GUO Ying, GUO Feng, FANG Xiaowei. Research of PM2.5 agglomeration for multi-scale integrated/multi-field synergy/multiphase coupling mechanism [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 500-505. |
[13] | TANG Hao, LI Wenyan, WANG Qi, LU Qiang, LI Hui, HU Xiaoying, DONG Changqing. Research progress on the control of SO2 oxidation by commercial SCR catalyst [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2143-2149. |
[14] | SUN Yawei, XIE Meilian, LIU Qingling, MA Degang, JI Na, SONG Chunfeng. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1880-1889. |
[15] | ZHANG Shenghan, SUN Chenhao, CHEN Yuqiang. Research progress on selenium removal of FGD wastewater from coal-fired power plants [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1460-1469. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 661
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |