Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 5091-5102.DOI: 10.16085/j.issn.1000-6613.2019-0268
• Resources and environmental engineering • Previous Articles Next Articles
Xiaolong LI1(),Fahua ZHU1(),Jiuxiang DUAN1,Junzhuang LI1,Liu YANG2,Wenjie ZHANG1
Received:
2019-02-26
Online:
2019-11-05
Published:
2019-11-05
Contact:
Fahua ZHU
李小龙1(),朱法华1(),段玖祥1,李军状1,杨柳2,张文杰1
通讯作者:
朱法华
作者简介:
李小龙(1988—),男,硕士,研究方向为火电厂大气污染物控制与监测。E-mail: 基金资助:
CLC Number:
Xiaolong LI,Fahua ZHU,Jiuxiang DUAN,Junzhuang LI,Liu YANG,Wenjie ZHANG. An overview of condensable particulate matter emission from stationary sources[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5091-5102.
李小龙,朱法华,段玖祥,李军状,杨柳,张文杰. 固定污染源排放可凝结颗粒物研究进展[J]. 化工进展, 2019, 38(11): 5091-5102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0268
1 | 孔少飞 . 大气污染源排放颗粒物组成、有害组分风险评价及清单构建研究[D]. 天津: 南开大学, 2012. |
KONG Shaofei . Study on the chemical composition, risk assement and emission inventory establishment for hazardous compoments in particulate matter from atmospheric pollution sources [D]. Tianjin: Nankai University, 2012. | |
2 | 姬亚芹 . 城市空气颗粒物源解析土壤风沙尘成分谱研究[D]. 天津: 南开大学, 2006. |
JI Yaqing . Study on the soil dust profiles for source apportionment of ambient paraticulate matter [J]. Tianjin: Nankai University, 2006. | |
3 | LI Jingwei , QI Zhifu , LI Min , et al . Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant [J]. Energy & Fuels, 2017, 31(2): 1778-1785. |
4 | QI Zhifu , LI Jingwei , WU Dongli , et al . Particulate matter emission characteristics and removal efficiencies of a low-low temperature electrostatic precipitator [J]. Energy & Fuels, 2017, 31(2): 1741-1746. |
5 | HEINTZENBERG J . Fine particles in the global troposphere: a review [J]. Tellus, 1989, 41B (2): 149-160. |
6 | 贺克斌, 杨复沫, 段凤魁, 等 . 大气颗粒物与区域复合污染[M]. 北京: 科学出版社, 2011: 139-306. |
HE Kebin , YANG Fumo , DUAN Fengkui , et al . Atmospheric particulate matter and regional combined pollution [M]. Beijing: Science Press, 2011: 139-306. | |
7 | RUSSELL A G , BRUNEKREEF B . A focus on particulate matter and health [J]. Environmental Science & Technology, 2009, 43(13): 4620-4625. |
8 | SCHWARZE PE , OVREVIK J , LÅG M , et al . Particulate matter properties and health effects: consistency of epidemiological and toxicological studies [J]. Human & Experimental Toxicology, 2006, 25(10): 559-579. |
9 | YANG T T , HSU C Y, CHEN Y C , et al . Characteristics, sources, and health risks of atmospheric PM2.5 bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan [J]. Aerosol and Air Quality Research, 2017, 17(2): 563-573. |
10 | WU Hao , PAN Daning , JIANG Yezheng , et al . Improving the removal offline particles from desulfurized flue gas by adding humid air [J]. Fuel, 2016, 184: 153-161. |
11 | PÖSCHL U . Atmospheric aerosols: composition, transformation, climate and health effects [J]. Angewandte Chemie: International Edition, 2005, 44: 7520-7540. |
12 | HUANG W C , HOU S S , LIN T H . Combustion characteristics of a 300kWth oil-fired furnace using castor oil/diesel blended fuels [J]. Fuel, 2017, 208: 71-81. |
13 | 王佳 . 郑州市PM2 . 5污染特征及其源解析研究[D]. 郑州: 郑州大学, 2015. |
WANG Jia . Chemical composition characteristics and source apportionment of PM2 . 5 in Zhengzhou [D]. Zhengzhou: Zhengzhou University, 2015. | |
14 | 贾琳琳 . 北方寒冷地区大气颗粒物污染特征及源解析研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
JIA Linlin . Study on pollution characteristics and source apportionment of atmospheric particles on the northern cold region [D]. Harbin: Harbin Institute of Technology, 2014. | |
15 | 王苏蓉, 喻义勇, 王勤耕, 等 . 基于PMF模式的南京市大气细颗粒物源解析[J]. 中国环境科学, 2015, 35(12): 3535-3542. |
WANG Surong , YU Yiyong , WANG Qingeng , et al . Source apportionment of PM2.5 in Nanjing by PMF [J]. China Environment Science, 2015, 35(12): 3535-3542. | |
16 | 裴冰 . 燃煤电厂可凝结颗粒物的测试与排放[J]. 环境科学, 2015, 36(5): 1544-1549. |
PEI Bing . Determination and emission of condensable particulate matter from coal-fired power plants [J]. Environmental Science, 2015, 36(5): 1544-1549. | |
17 | FENG Yupeng , LI Yuzhong , CUI Lin . Critical review of condensable particulate matter [J]. Fuel, 2018, 224: 801-813. |
18 | YANG H H , LEE K T, HSIEH Y S , et al . Filterable and condensable fine particulate emissions from stationary sources [J]. Aerosol and Air Quality Research, 2014, 14: 2010-2016. |
19 | United States Environmental Protection Agency (U . S. EPA). Estimation of the importance of condensed particulate matter to ambient particulate levels [R]. Washington, D. C. U. S. EPA, 1983. |
20 | United States Environmental Protection Agency (U. EPA) S. . Dry impinger method for determining condensable particulate emissions from stationary sources: Method 202 [S]. Washington, D. C. U. S. EPA, 2010. |
21 | MORINO Y , CHATANI S , TANABE K , et al . Contributions of condensable particulate matter to atmospheric organic aerosol over Japan [J]. Environmental Science & Technology, 2018, 52(15): 8456-8466. |
22 | LEI Y , ZHANG Q , HE K B , et al . Primary anthropogenic aerosol emission trends for China, 1990—2005 [J]. Atmospheric Chemistry and Physics, 2011, 11(3): 931-954. |
23 | WANG Gang , DENG Jianguo , MA Zizhen , et al . Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China [J]. Science of the Total Environment, 2018, 639: 695-704. |
24 | YANG H H , LEE K T, HSIEH Y S , et al . Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants [J]. Aerosol and Air Quality Research, 2015, 15: 1672-1680. |
25 | 胡月琪, 冯亚君, 王琛, 等 . 燃煤锅炉烟气中CPM与水溶性离子监测方法及应用研究[J]. 环境监测管理与技术, 2016, 28(1): 41-45. |
HU Yueqi , FENG Yajun , WANG Chen , et al . Studies on monitoring method of condensable particulate and water-soluble ions in fumes from coal fired boilers [J]. The Administration and Technique of Environmental Monitoring, 2016, 28(1): 41-45. | |
26 | CORIO L A , SHERWELL J . In-stack condensible particulate matter measurements and issues [J]. Journal of the Air & Waste Management Association, 2000, 50(2): 207-218. |
27 | TSUKADA M , NISHIKAWA N , HORIKAWA A , et al . Emission potential of condensable suspended particulate matter from flue gas of solid waste combustion [J]. Powder Technology, 2008, 180(1/2): 140-144. |
28 | HUANG Rujin , ZHANG Yanlin , BOZZETTI C , et al . High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222. |
29 | YI Honghong , HAO Jiming , DUAN Lei , et al Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China [J]. Fuel, 2008, 87(10/11): 2050-2057. |
30 | ZHANG Lian , NINOMIYA Y , YAMASHITA T . Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature [J]. Fuel,2006, 85(10/11): 1446-1457. |
31 | 屈成锐, 赵长遂, 段伦博, 等 . 燃煤超细颗粒物形成机理及其控制的研究进展[J]. 热能动力工程, 2008, 23(5): 447-450. |
QU Chengrui , ZHAO Changsui , DUAN Lunbo , et al . Latest adances in research on the formation mechanism of superfine particles during coal combustion and its control [J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(5): 447-450. | |
32 | LEE S W, HERAGE T , DUREAU R , et al . Measurement of PM2.5, and ultra-fine particulate emissions from coal-fired utility boilers [J]. Fuel, 2013, 108(11): 60-66. |
33 | United States Environmental Protection Agency (U. EPA) S. . Measurement of PM2 . 5 and PM10 by dilution sampling (constant sampling rate procedures): CTM 039 [S]. Washington, D. C. U. S. EPA, 2004. |
34 | 蒋靖坤, 邓建国, 李振, 等 . 固定污染源排气中PM2.5采样方法综述[J]. 环境科学, 2014, 35(5): 2018-2024. |
JIANG Jingkun , DENG Jianguo , LI Zhen , et al . Sampling methods for PM2.5 from stationary sources: a review [J]. Environmental Science, 2014, 35(5): 2018-2024. | |
35 | LIPSKY E M , PEKNEY N , WALBERT G , et al . Effects of dilution sampling on fine particle emissions from pulverized coal combustion [J]. Aerosol Science and Technology, 2004, 38(6): 574-587. |
36 | RICHARDS J , HOLDER T , GOSHAW D . Optimized Method 202 sampling train to minimize the biases associated with Method 202 measurement of condensable particulate matter emissions [C]// Hazardous Waste Combustion Specialty Conference, United States: Air & Waste Management Association, 2005. |
37 | BOWER R M , MERRILL R G . Condensable particulate and method 202 modifications update [C]// United States: Air and Waste Management Association, 2007: 251-256. |
38 | WILLENBERG J , RICHARDS J . Condensable particulate matter-measuring and permitting it: Pacific Northwest International Section Annual Conference [C]// Anchorage, AK: Air & Waste Management Association, 2008. |
39 | TSUKADA M , HORIKAWA A , SUGIMOTO K , et al . Emission behavior of condensable suspended particulate matter from a laboratory scale RDF fluidized bed combustor [J]. Journal of Chemical Engineering of Japan, 2007, 40(10): 869-873. |
40 | 胡月琪, 马召辉, 冯亚君, 等 . 北京市燃煤锅炉烟气中水溶性离子排放特征[J]. 环境科学, 2015, 36(6): 1966-1973. |
HU Yueqi , MA Zhaohui , FENG Yajun , et al . Emission characteristics of water-soluble ions in fumes of coal fired boiers in Beijing [J]. Environmental Science, 2015, 36(6): 1966-1973. | |
41 | 杨柳, 张斌, 王康慧, 等 . 超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J]. 环境科学, 2019 (1): 1-8. |
YANG Liu , ZHANG Bin , WANG Kanghui , et al . Conversion characteristics of combustible particles from coal-fired flue gas in WFGD and WESP [J]. Environmental Science, 2019 (1): 1-8. | |
42 | ISO . Stationary source emissions—Test method for determining PM2 . 5 and PM10 mass in stack gases using cyclone samplers: ISO 25597—2013 [S]. Switzerland: ISO. 2013. |
43 | 周楠, 曾立民, 于雪娜, 等 . 固定源稀释通道的设计和外场测试研究[J]. 环境科学学报, 2006, 26(5): 764-772. |
ZHOU Nan , ZENG Limin , YU Xuena , et al . The design and field test of a dilution tunnel for stationary sources [J]. Acta Science Circumstance, 2006, 26(5): 764-772. | |
44 | 李兴华, 段雷, 郝吉明, 等 . 固定燃烧源颗粒物稀释采样系统的研制与应用[J]. 环境科学学报, 2008, 28(3): 458-463. |
LI Xinghua , DUAN Lei , HAO Jiming , et al . Design application of a dilution stack sampling system for measuring particulate matter from stationary combustion sources [J]. Acta Science Circumstance, 2008, 28(3): 458-463. | |
45 | 韩斌 . 燃煤尘稀释采样器的设计及成分谱建立方法研究[D]. 天津: 南开大学, 2009. |
HAN Bin . Design of coal-dust dilution sampler and study on composition spectrum method [D]. Tianjin: Nankai University, 2009. | |
46 | 李兴华, 曹阳, 蒋靖坤, 等 . 固定源PM2.5稀释采样器的研制[J]. 环境科学学报, 2015, 35(10): 3309-3315. |
LI Xinghua , CAO Yang , JIANG Jingkun , et al . Development of a dilution sampler for measuring fine particle from stationary sources [J]. Acta Science Circumstance, 2015, 35(10): 3309-3315. | |
47 | CANO M , VEGA F , NAVARRETE B , et al . Characterization of emissions of condensable particulate matter in clinker kilns using a dilution sampling system [J]. Energy & Fuels, 2017, 31(8): 7831-7838. |
48 | 赵金宝, 赵珊, 李峰 . Nafion干燥器除湿技术在VOC检测上的应用[J]. 分析仪器, 2018(2): 6-13. |
ZHAO Jinbao , ZHAO Shan , LI Feng . A review of the application of Nafion dryer application in moisture removal during VOCs monitoring [J]. Analytical Instrumentation, 2018(2): 6-13. | |
49 | 蒋雄杰, 李峰 . Nafion干燥器GASS处理系统在“超低排放”CEMS中的工程应用研究[J]. 分析仪器, 2015(3): 26-33. |
JIANG Xiongjie , LI Feng . Research and application of GASS preconditioning system for “ultra low emission” CEMS in coal fired plant [J]. Analytical Instrumentation, 2015(3): 26-33. | |
50 | LI Jingwei , LI Xiaodong , ZHOU Chenyang , et al . Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter [J]. Energy & Fuels, 2017, 31: 13233-13238. |
51 | YANG H H , ARAFATH S M D , LEE K T, et al . Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels [J]. Fuel, 2018, 232: 415-422. |
52 | YANG H H , ARAFATH S M D , WANG Y F , et al . Comparison of coal- and oil-fired boilers through the investigation of filterable and condensable PM2.5 sample analysis [J]. Energy & Fuels, 2018, 32(3): 2993-3002. |
53 | BHANARKAR A D , GAVANE A G , TAJNE D S , et al . Composition and size distribution of particles emissions from a coal-fired power plant in India [J]. Fuel, 2008, 87(10/11): 2095-2101. |
54 | GOODARZI F . Characteristics and composition of fly ash from Canadian coalfired power plants [J]. Fuel, 2006, 85(10): 1418-1427. |
55 | LI Jingwei , LI Xiaodong , ZHOU Chenyang , et al . Correlation between polycyclic aromatic hydrocarbon concentration and particulate matter during the removal process of a low-low temperature electrostatic precipitator [J]. Energy & Fuels, 2017, 31(7): 7256-7262. |
56 | 刘伟冬 . 旋风滤筒复合除尘器的结构设计与内部流场数值模拟分析[D]: 青岛: 青岛科技大学, 2017. |
LIU Weidong . Cyclone filter cylinder composite filter optimization design and simulation analysis of the internal flow field [D]. Qingdao: Qingdao University of Science & Technology, 2017. | |
57 | 严俊波, 李小龙 . 燃煤电厂电除尘器改造技术应用对比分析[J]. 电力科技与环保, 2017, 33(4): 26-28. |
YAN Junbo , LI Xiaolong . Comparison and analysis of ESP transformation technologies used in coal-fired power plants [J]. Electric Power Technology and Environmental Protection, 2017, 33(4): 26-28. | |
58 | 胡斌, 刘勇, 任飞, 等 . 低低温电除尘协同脱除细颗粒与SO3实验研究[J]. 中国电机工程学报, 2016, 36(16): 4319-4325. |
HU Bin , LIU Yong , REN Fei , et al . Experimental study on simultaneous control of fine particulate and SO3 by low-low temperature electrostatic precipitor [J]. Proceedings of the CSEE, 2016, 36(16): 4319-4325. | |
59 | 杨传遍, 袁竹林, 杨林军, 等 . 袋式除尘器在国电九江电厂的应用及其对PM2.5的脱除分析[J]. 电力科技与环保, 2014, 30(4): 47-49. |
YANG Chuanbian , YUAN Zhulin , YANG Linjun , et al . Discussion on application of bag filter in Guodian Jiujiang Power Plant and its removal efficiency of PM2.5 [J]. Electric Power Technology and Environmental Protection, 2014, 30(4): 47-49. | |
60 | 陈奎续 . 电袋复合除尘+湿法脱硫工艺脱除多污染物的效果研究[J]. 环境污染与防治, 2018, 40(4): 398-403. |
CHEN Kuixu . Research of multi-pollutants removal performance by technology based on electrostatic fabric integrated precipitator and wet flue gas desulfurization [J]. Environmental Pollution & Control, 2018, 40(4): 398-403. | |
61 | 李小龙, 周道斌, 段玖祥, 等 . 超低排放下燃煤电厂颗粒物排放特征分析研究[J]. 中国环境监测, 2018, 34(3): 45-50. |
LI Xiaolong ZHOU Daobin, DUAN Jiuxiang , et al . Characteristics of particle emission from coal-fired power plants under ultra-low emission standard [J]. Environmental monitoring in China, 2018, 34(3): 45-50. | |
62 | 赵磊, 周洪光 . 超低排放燃煤火电机组湿式电除尘器细颗粒物脱除分析[J]. 中国电机工程学报, 2016, 36(2): 468-473. |
ZHAO Lei , ZHOU Hongguang . Particle removal efficiency analysis of WESP in an ultra low emission coal-fired power plant [J]. Proceedings of the CSEE, 2016, 36(2): 468-473. | |
63 | 赵承美, 孙俊民, 刘惠永 . 褐煤与烟煤燃烧排放可吸入颗粒物的特性[J]. 环境科学与技术, 2010, 33(12): 140-143. |
ZHAO Chengmei , SUN Junmin , LIU Huiyong . Characteristics of inhalable particulate matters from lignite and bituminous coal combustion [J]. Environmental Science & Technology, 2010, 33(12): 140-143. | |
64 | 沈志刚, 刘启贞, 陶雷行, 等 . 湿式电除尘器对烟气中颗粒物的去除特性[J]. 环境工程学报, 2016, 10(5): 2557-2561. |
SHEN Zhigang , LIU Qizhen , TAO Leixing , et al . Removal characteristics of particulate matters in flue gas by wet electrostatic precipitator [J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2557-2561. |
[1] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[2] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[3] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[4] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[5] | CAI Juyan, SU Qiong, WANG Yanbin, WANG Hongling, LIANG Junxi, WANG Zhongxu, GUO Li, ZHAO Libin. Research progress on biodegradable foaming materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1457-1470. |
[6] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[7] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, WANG Kai, ZHANG Shoushi. Application of activated carbon fiber supported desulfurizer in mine gas environment [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 415-423. |
[8] | WANG Yinmei, ZHANG Zhaohui, LIU Shenghao, JIAO Wenze, WANG Lijin, TENG Yadong, LIU Jie. Atmospheric pressure decomposition of carbon dioxide hydrate in accelerator system [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 141-149. |
[9] | WANG Yunfei, SUN Changyu, YU Xichong, LI Qingping, CHEN Guangjin. Analysis of the methane hydrate decomposition kinetics through depressurization method by using a pilot-scale reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4111-4119. |
[10] | GUO Ruonan, YI Zhenwei, WANG Tao, SONG Jiayi, FANG Mengxiang. Assessment method of CO2 uptake ratio of carbonation-cured concrete based on reactive compositions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2722-2732. |
[11] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
[12] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
[13] | GUAN Jingying, ZHANG Huanhuan, SU Zikai, SHI Daxin, WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, LI Hansheng. Recent progress in nickel-based catalysts for ammonia decomposition to hydrogen [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6319-6337. |
[14] | LENG Nanjiang, MA Guoguang, ZHANG Tao, LEI Yang, PENG Hao, XIONG Zuoshuai, CHEN Yuting. Research and exploration on purification of natural gas with high organic sulfur content [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5342-5353. |
[15] | WANG Yingmei, ZHANG Zhaohui, NIU Aili, LIU Shenghao, JIAO Wenze, ZHANG Peng. Research progress on influencing factors of stable storage of carbon dioxide hydrate [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 364-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |