Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 882-889.DOI: 10.16085/j.issn.1000-6613.2019-1018
• Chemical processes and equipment • Previous Articles Next Articles
Huan REN1,2(),Bingtao ZHAO1,2(),Dongshen WANG1,2,Yun ZHANG1,2
Received:
2019-06-27
Online:
2020-04-03
Published:
2020-03-05
Contact:
Bingtao ZHAO
通讯作者:
赵兵涛
作者简介:
任欢(1995—),女,硕士研究生,研究方向为旋流流动与过程强化。E-mail:基金资助:
CLC Number:
Huan REN,Bingtao ZHAO,Dongshen WANG,Yun ZHANG. Simulation analysis of the effect of particle loadings on the performance of small cyclone[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 882-889.
任欢,赵兵涛,王东燊,张芸. 颗粒负荷对小型旋风器性能影响的模拟分析[J]. 化工进展, 2020, 39(3): 882-889.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1018
颗粒粒径/μm | 体积分数/% |
---|---|
0.5 | 1.5 |
1 | 16 |
2 | 31 |
5 | 51.5 |
颗粒粒径/μm | 体积分数/% |
---|---|
0.5 | 1.5 |
1 | 16 |
2 | 31 |
5 | 51.5 |
颗粒浓度 /kg·m-3 | 颗粒质量负荷/kg·kg-1 | ||
---|---|---|---|
Qin=40L·min-1 | Qin=60L·min-1 | Qin=80L·min-1 | |
0.2 | 0.012 | 0.008 | 0.006 |
0.5 | 0.03 | 0.02 | 0.015 |
1 | 0.06 | 0.04 | 0.03 |
2 | 0.12 | 0.08 | 0.06 |
3 | 0.18 | 0.12 | 0.09 |
颗粒浓度 /kg·m-3 | 颗粒质量负荷/kg·kg-1 | ||
---|---|---|---|
Qin=40L·min-1 | Qin=60L·min-1 | Qin=80L·min-1 | |
0.2 | 0.012 | 0.008 | 0.006 |
0.5 | 0.03 | 0.02 | 0.015 |
1 | 0.06 | 0.04 | 0.03 |
2 | 0.12 | 0.08 | 0.06 |
3 | 0.18 | 0.12 | 0.09 |
1 | ZHAO Bingtao,WANG Dongshen,SU Yaxin,et al.Gas-particle cyclonic separation dynamics: modeling and characterization[J].Separation & Purification Reviews,2018,120:1-11. |
2 | 刘洪斌,张进,肖慧娜,等.固相颗粒在旋流场形成过程中的运动分析[J].化工进展,2019,38(3):1236-1243. |
LIU Hongbin,ZHANG Jin,XIAO Huina,et al.Movement analysis of solid particles during the formation of swirl field[J].Chemical Industry and Engineering Progress,2019,38(3):1236-1243. | |
3 | 张梓均,赵兵涛,王大淇,等.微型多进口旋流器内气流形态的数值模拟[J].化学工程,2018,46(8):65-69. |
ZHANG Zijun,ZHAO Bingtao,WANG Daqi,et al.Numerical simulation of the gas phase flow in the small-scale cyclonic reactor with multi-inlet[J].Chemical Engineering,2018,46(8):65-69. | |
4 | 孙国刚,时铭显.提高旋风分离器捕集细粉效率的技术研究进展[J].现代化工,2008,28(7):64-69. |
SUN Guogang,SHI Mingxian.Progress in improving removal efficiency of gas cyclones for fine particles[J].Modern Chemical Industry,2008,28(7):64-69. | |
5 | 袁惠新,方勇,付双成,等.旋流器的微米级颗粒分级性能分析[J].化工进展,2017,36(12):4371-4377. |
YUAN Huixin,FANG Yong,FU Shuangcheng,et al.Analysis of the classification performance of micron particles with hydrocyclones[J].Chemical Industry and Engineering Progress,2017,36(12):4371-4377. | |
6 | ENDRES E,DUECK J,NEESSE T.Hydrocyclone classification of particles in the micron range[J].Minerals Engineering,2012,31:42-45. |
7 | 阮兵,李兴华,谢岩,等.PM2.5旋风切割器的性能测试与模拟[J].环境科学学报,2018,38(7):2811-2817. |
RUAN Bing,LI Xinghua,XIE Yan,et al.Performance testing and modeling of PM2.5 cyclones[J].Acta Scientiae Circumstantiae,2018,38(7):2811-2817. | |
8 | 狄文静,张增福,马艺闻,等.PM2.5细颗粒物分离技术的数值模拟和性能改进[J].纳米技术与精密工程,2014,12(4):263-268. |
DI Wenjing,ZHANG Zengfu,MA Yiwen,et al.Numerical modeling and performance improvement for PM2.5 separating technology[J].Nanotechnology and Precision Engineering,2014,12(4):263-268. | |
9 | 陈强,刘佳,邓元臣,等.高岭土使用直径10mm水力旋流器超细分级的研究[J].非金属矿,2011,6(24):29-31. |
CHEN Qiang,LIU Jia,DENG Yuanchen,et al.Research on kaolin ultrafne classifcation byΦ10mm hydrocyclone[J].Non-Metallic Mines,2011,6(24):29-31. | |
10 | ZHU Guofeng,LIOW J,ANDREW N.Computational study of the flow characteristics and separation efficiency in a mini-hydrocyclone[J].Chemical Engineering Research and Design,2012,90(12):2135-2147. |
11 | 李丹,马贵阳,杜明俊,等.基于离散相模型的旋风分离器内部流场数值研究[J].流体机械,2011,39(9):21-25. |
LI Dan,MA Guiyang,DU Mingjun,et al.Numerical study for flow field in a cyclone separator based on the discrete phase model[J].Fluid Mechinery,2011,39(9):21-25. | |
12 | 高助威,王娟,王江云,等.基于DPM模型的旋风分离器内颗粒浓度场模拟分析[J].石油学报(石油加工),2018,34(3):81-88. |
GAO Zhuwei,WANG Juan,WANG Jiangyun,et al.Simulation analysis of particle concentration of cyclone separator using the DPM model[J].Acta Petrolei Sinica(Petoleum Processing Section),2018,34(3):81-88. | |
13 | CHU K,WANG B,XU D,et al.CFD-DEM simulation of the gas-solid flow in a cyclone separator[J].Chemical Engineering Science,2011,66(5):834-847. |
14 | KHAROUA N,KHEZZAR L,NEMOUCHI Z.Study of the pressure drop and flow field in standard gas cyclone models using the granular model[J].International Journal of Chemical Engineering,2011,2011:791218. |
15 | 刘霞,杨先海,李倩.基于Fluent废塑料薄膜旋风分离过程的研究[J].工业安全与环保,2016,42(1):38-41. |
LIU Xia,YANG Xianhai,LI Qian.Research on waste plastic membrane separation in the cyclone based on Fluent[J].Industrial Safe and Evironmenta Protection,2016,42(1):38-41. | |
16 | QIAN F,HUANG Z,CHEN G,et al.Numerical study of the separation characteristics in a cyclone of different inlet particle concentrations[J].Computers & Chemical Engineering,2007,31(9):1111-1122. |
17 | SOMMERFELD M,HO C.Numerical calculation of particle transport in turbulent wall bounded flows[J].Powder Technology,2003,131(1):1-6. |
18 | 武生智,任春勇.基于欧拉双流体模型的风沙运动模拟[J].兰州大学学报(自然科学版),2012,48(1):104-107. |
WU Shengzhi,REN Chunyong.Numerical simulation of wind blown sand based on the Eulerian model[J].Journal of Lanzhou University (Natural Sciences),2012,48(1):104-107. | |
19 | YOUNG G,WAKLEY W,TAGGART D,et al.Oil-water separation using hydrocyclones: an experimental search for optimum dimensions[J].Journal of Petroleum Science & Engineering,1994,11(1):37-50. |
20 | YUU S,JOTAKI T,TOMITA Y,et al.The reduction of pressure drop due to dust loading in a conventional cyclone[J].Chemical Engineering Science,1978,33(12):1573-1580. |
21 | 张晓华.颗粒物性参数对旋风分离器性能影响的试验研究[J].流体机械,2009,37(12):1-4. |
ZHANG Xiaohua.Experimental research of cyclone separator performance influence of properties of granule matter[J].Fluid Machinery,2009,37(12):1-4. | |
22 | 金向红,金有海,王建军,等.气液旋流器的分离性能[J].中国石油大学学报(自然科学版),2009,33(5):124-129. |
JIN Xianghong,JIN Youhai,WANG Jianjun,et al.Separation performance of gas-liquid cyclone separator[J].Journal of China University of Petroleum,2009,33(5):124-129. | |
23 | 罗晓兰,陈建义,金有海,等.入口含尘浓度对PV型旋风分离器分离效率的影响及其计算方法[J].石油大学学报(自然科学版),1998,22(3):63-66. |
LUO Xiaolan,CHEN Jianyi,JIN Youhai,et al.Effect of the inlet solid loading on separation efficiency of PV type cyclone separators and it’s calculation method[J].Journal of the University of Petroleum,1998,22(3):63 -66. | |
24 | 李晓曼,宋健斐,孙国刚,等.入口含尘浓度变化对不同排气管结构PV型旋风分离器分离效率的影响[J].石油炼制与化工,2015,46(10):28-33. |
LI Xiaoman,SONG Jianpei,SUN Guogang,et al.Study of effect of feed dust concentration on separation efficiency of PV type cyclone with different exit tubes[J].Petroleum Processing and Petrochemicals,2015,46(10):28-33. | |
25 | 陈建义,罗晓兰,时铭显.含尘条件下PV型旋风分离器压降的计算[J].石油化工设备技术,1997(4):1-3. |
CHEN Jianyi,LUO Xiaolan,SHI Mingxian.Presure drop calculation of PV type cyclone under dust-bearing condition[J].Petro-Chemical Equipment Technology,1997(4):1-3. | |
26 | FASSANI F,GOLDSTEIN L.A study of the effect of high inlet solids loading on a cyclone separator pressure drop and collection efficiency[J].Powder Technology,2000,107(1):60-65. |
27 | WU Xuezhi,LIU Jie,XU Xiang,et al.Modeling and experimental validation on pressure drop in a reverse-flow cyclone separator at high inlet solid loading[J].Journal of Thermal Science,2011,20(4):343-348. |
28 | GIL A,ROMEO L M,CORTÉS C.Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids[J].Chemical Engineering & Technology,2015,25(4):407-415. |
29 | TREFZ M,MUSCHELKNAUTZ E.Extended cyclone theory for gas flows with high solids concentration[J].Chemical Engineering & Technology,1993,16(3):153-160. |
30 | ZHU Y F,LEE K W.Experimental study on small cyclones operating at high flowrates[J].Journal of Aerosol Science,1999,30(10):1303-1315. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[12] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[13] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[14] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[15] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |