Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (12): 5170-5181.DOI: 10.16085/j.issn.1000-6613.2020-0355

• Materials science and technology • Previous Articles     Next Articles

Non-woven composite forward osmosis membrane with three-dimensional polyamide desalination network structure

Yilian TANG1(), Shiyang LI1, Zhijuan SUN1, Congjie GAO1, Lixin XUE1,2()   

  1. 1.Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    2.College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
  • Online:2020-12-02 Published:2020-12-05
  • Contact: Lixin XUE

具有三维聚酰胺脱盐网络结构的无纺布复合正渗透膜

汤依莲1(), 李士洋1, 孙志娟1, 高从堦1, 薛立新1,2()   

  1. 1.浙江工业大学化工学院膜分离与水科学技术中心,浙江 杭州 310014
    2.温州大学化学与材料工程学院,浙江 温州 325035
  • 通讯作者: 薛立新
  • 作者简介:汤依莲(1995—),女,硕士研究生,研究方向为膜科学与技术。E-mail:2111701152@zjut.edu.cn
  • 基金资助:
    国家自然科学基金(NSFC-21975222);绍兴市“330人才计划”(ACX201424)

Abstract:

FO membranes were constructed by interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) directly in the porous spaces of polyester non-woven (NV) fabrics. The multi-layer three-dimensional (3-D) polyamide structure formed by the NVC-FO membrane inside the non-woven fabric was distributed inside the PET support material with a depth of 30~50μm. This relatively loose 3-D polyamide network not only had a large water-permeable surface area, but also avoided high salt leakage caused by thin-layer polyamide defects with a low reverse salt flux. Further research found that reducing the monomer concentration (1%~0.01% MPD, 0.5%~0.005% TMC) within a certain range can form a wider 3-D polyamide network structure, while maintaining a low reverse salt flux and a higher water flux. The optimized NVC-FO membrane water flux can reach a maximum of 193.54L/(m2·h), and the reverse salt flux was 0.047mol/(m2·h) by using 1mol/L NaCl as the draw solution. It was found from the pressured forward osmosis experiments that the salt penetrating rupture pressure of these high-throughput NVC-FO membranes was between 200~1400Pa, confirming that reducing the monomer concentration would cause a significant decrease in the pressure resistance performance of the membranes. Although the pressure resistance of NVC-FO membrane needed to be improved, this research may provide a new idea for the construction of FO membrane with high desalination performance.

Key words: forward osmosis, membrane, polyamide, none-woven, three-dimensional (3-D), desalination, permeation

摘要:

利用间苯二胺(MPD)和均苯三甲酰氯(TMC),直接在聚酯无纺布(NV)织物的多孔空间中进行界面聚合,形成大通量无纺布复合正渗透(NVC-FO)膜。NVC-FO膜在无纺布内部形成的多层次三维(3-D)聚酰胺结构,分布在30~50μm深的聚对苯二甲酸乙二醇酯支撑材料的内部。这种相对松散的有深度的3-D聚酰胺网络,不仅透水表面积大,而且可以避免薄层聚酰胺缺陷导致的高漏盐性,有较低的反向盐通量。进一步研究发现,在一定范围内降低单体质量分数(MPD 1%~0.01%,TMC 0.5%~0.005%),可以形成更宽广的3-D聚酰胺网络结构,在保持较低的反向盐通量的同时得到更高的水通量。使用1mol/L NaCl作为汲取溶液,优化的NVC-FO膜水通量最高可以达到193.54L/(m2·h),反向盐通量为0.047mol/(m2·h)。采用加压正渗透实验,发现这些高通量NVC-FO膜的盐穿透破裂压力在200~1400Pa之间,而且证实了降低单体质量分数会导致膜的耐压性能显著降低。尽管NVC-FO膜的耐压性能有待提高,但是该研究有可能为构建高脱盐性能的FO膜提供一条新的思路。

关键词: 正渗透, 膜, 聚酰胺, 无纺布, 三维(3-D), 脱盐, 渗透

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd